Advertisement

Russian Metallurgy (Metally)

, Volume 2019, Issue 5, pp 548–555 | Cite as

Development of Fatigue Damages in a Pseudo-α-Titanium Alloy after Intense Thermomechanical Treatment

  • V. P. BagmutovEmail author
  • V. I. Vodop’yanov
  • I. N. Zakharov
  • A. V. Vdovenko
  • M. D. Romanenko
  • V. V. Chekunov
Article
  • 3 Downloads

Abstract

The influence of surface hardening by electrochemical treatment, abrasive-free ultrasonic finishing treatment, and their combination on the accumulation of fatigue damages in a pseudo-α-titanium alloy (PT3V) during pulsed cyclic loading in a transition stage of fatigue (104–105 cycles) is studied. The fatigue damage accumulation kinetics is estimated using the inelasticity parameters of a specimen (hysteresis loop width, cyclic creep, rigidity (compliance)) during cyclic loading, an analysis of fracture surfaces, and the crack growth rate. The state of surface layer is shown to play a key role in the change in the fatigue life of laboratory specimens. The type of surface hardening only weakly affects the accumulation of fatigue damages at the stages of stable crack growth and rupture.

Keywords:

titanium alloy surface hardening electromechanical treatment ultrasonic treatment fatigue life fractography inelasticity fatigue crack growth 

Notes

REFERENCES

  1. 1.
    V. P. Bagmutov, S. N. Parshev, N. G. Dudkina, and I. N. Zakharov, Electromechanical Treatment: Technological and Physical Principles, Properties, Implementation (Nauka, Novosibirsk, 2003).Google Scholar
  2. 2.
    V. P. Biryukov, I. M. Petrova, and I. V. Gadolina, “Effect of laser facing on the fatigue resistance characteristics,” Mashinostr. Inzh. Obraz., No. 2, 54–57 (2013).Google Scholar
  3. 3.
    R. R. Valiev, Yu. M. Modina, A. V. Polyakov, I. P. Semenova, and V. S. Zhernakov, “Fatigue strength and fracture of an ultrafine-grained VT6 titanium alloy,” Vestn. UGATU 20 (2(72)), 11–16 (2016).Google Scholar
  4. 4.
    C. Tan, X. Li, Q. Sim, L. Xiao, Y. Zhao, and J. Sun, “Effect of α-phase morphology on low-cycle fatigue behavior of TC21 alloy,” Int. J. Fatigue, No. 75, 1–9 (2015).CrossRefGoogle Scholar
  5. 5.
    M. B. Sazonov and L. V. Solovatskaya, “Stresses in the surface layer of a part after hardening by various surface plastic deformation methods,” Vestn. Samar. Gos. Aerokosmich. Univ. 14 (3), 467–473 (2015).CrossRefGoogle Scholar
  6. 6.
    X. Yuan, Z. P. Yue, S. F. Wen, L. Li, and T. Feng, “Numerical and experimental investigation of the cold expansion process with split sleeve in titanium alloy TC4,” Int. J. Fatigue, No. 77, 78–85 (2015).CrossRefGoogle Scholar
  7. 7.
    T. M. Mower, “Degradation of titanium 6Al–4V fatigue strength due to electrical discharge machining,” Int. J. Fatigue (2014).  https://doi.org/10.1016/j.ijfatigue.2014.02.018
  8. 8.
    B. K. Pant, A. H. V. Pavan, R. V. Prakash, and M. Kamaraj, “Effect of laser peening and shot peening on fatigue striations during FCGR study of Ti6Al4V,” Int. J. Fatigue (2016).  https://doi.org/10.1016/j.ijfatigue.2016.08.005
  9. 9.
    B. Brenner, Sh. Bonss, F. Titts, I. Kaspar, and D. Val’ter, “Method of producing wear-resistant and high-fatigue-strength surface layers on parts of titanium alloys and the part fabricated by this method,” RF Patent 2407822, 2005.Google Scholar
  10. 10.
    V. F. Terent’ev and S. A. Korableva, Fatigue of Metals (Nauka, Moscow, 2015).Google Scholar
  11. 11.
    V. T. Troshchenko, “Scattered fatigue damage of metals and alloys. I. Inelasticity, methods, and experimental results,” Probl. Prochn., No. 4, 5–32 (2005).Google Scholar
  12. 12.
    A. N. Pomanov, “Problems of materials science in the mechanics of deformation and fracture at the stage of crack formation,” Vestn. Nauch.-Tekh. Razvitiya, No. 11 (75), 38–49 (2013).Google Scholar
  13. 13.
    V. P. Bagmutov, V. I. Vodop’yanov, I. N. Zakharov, A. I. Gorunov, and D. S. Denisevich, “Effect of intense thermomechanical treatment on the structure and properties of titanium pseudo-α alloys during electromecanical treatment,” Russ. Metall. (Metally), No. 9, 712–715 (2013).Google Scholar
  14. 14.
    V. P. Bagmutov, V. I. Vodop’yanov, I. N. Zakharov, and D. S. Denisevich, “Relation between the fracture laws and the fatigue life of a surface-hardened pseudo-α- titanium alloy,” Russ. Metall. (Metally), No. 7, 663–668 (2016).Google Scholar
  15. 15.
    V. P. Bagmutov, D. S. Denisevich, I. N. Zakharov, and A. Yu. Ivannikov, “Taking into account the nonlinear and coupled effects of the thermal problem and phase transitions during the simulation of contact thermomechanical surface hardening of metallic alloys,” PNRPU Mechan. Bull., No. 1, 233–250 (2017).Google Scholar
  16. 16.
    I. V. Gorynin and B. B. Chechulin, Titanium in Machine Building (Mashinostroenie, Moscow, 1990).Google Scholar
  17. 17.
    V. F. Terent’ev, “Cyclic strength of submicro- and nanocrystalline metals and alloys (review),” Novye Mater. Tekhnol. Metallurg. Mashinostr., No. 1, 8–24 (2010).Google Scholar
  18. 18.
    N. V. Tumanov et al., “Simulation of the stable fatigue crack growth in the turbine disks in an aircraft engine in simple and complex loading cycles,” Vestn. Samar. Gos. Aerokosmich. Univ., No. 3 (19), 188–199 (2009).Google Scholar
  19. 19.
    A. A. Shanyavskii, Safe Fatigue Fracture of Aviation Construction Elements. Synergy in Engineering Applications (Monografiya, Ufa, 2003).Google Scholar
  20. 20.
    Handbook of the Stress Intensity Factors, Ed. by Yu. Murakami (Mir, Moscow, 1990), Vol. 2.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • V. P. Bagmutov
    • 1
    Email author
  • V. I. Vodop’yanov
    • 1
  • I. N. Zakharov
    • 1
  • A. V. Vdovenko
    • 1
  • M. D. Romanenko
    • 1
  • V. V. Chekunov
    • 1
  1. 1.Volgograd State Technical UniversityVolgogradRussia

Personalised recommendations