Advertisement

Russian Metallurgy (Metally)

, Volume 2018, Issue 9, pp 815–819 | Cite as

Resistance of the Contact Welding Electrodes Made of a Cu–0.7% Cr–0.9% Hf Alloy with an Ultrafine-Grained Structure

  • D. V. Shan’ginaEmail author
  • N. I. Ivanov
  • N. R. Bochvar
  • S. V. Dobatkin
Article

Abstract

The structure, the mechanical properties, and the electrical conductivity of the Cu–0.7% Cr–0.9% Hf alloy subjected to equal-channel angular pressing (ECAP) followed by aging are studied. The treatment that consists of ECAP and aging at 450°C for 2.5 h is shown to result in a high strength (σu = 605 MPa) and a high electrical conductivity (78% IACS) of the alloy. This combination of properties increases the resistance of the contact welding electrodes made of an ultrafine-grained Cu–0.7% Cr–0.9% Hf alloy as compared to its initial coarse-grained state.

Keywords:

copper alloys severe plastic deformation electrical conductivity strength contact welding electrodes 

Notes

ACKNOWLEDGMENTS

We thank M.N. Putintseva for her help in performing the experiments and helpful discussions.

This work was performed according to state task no. 007-00129-18-00.

REFERENCES

  1. 1.
    A. K. Nikolaev and V. M. Rozenberg, Alloys for Contact Welding Electrodes (Metallurgiya, Moscow, 1978).Google Scholar
  2. 2.
    N. Bochvar, “Cr–Cu–Zr (chromium–copper–zirconium),” in Non-Ferrous Metal Systems. Pt. 2: Selected Cooper Systems, Ed. by G. Effenberg and S. Ilyenko (Springer, Berlin, 2007), Vol. 11C2, pp. 228–242.Google Scholar
  3. 3.
    C. Watanabe, R. Monzen, and K. Tazaki, “Mechanical properties of Cu–Cr system alloys with and without Zr and Ag,” J. Mater. Sci. 43, 813–819 (2008).CrossRefGoogle Scholar
  4. 4.
    D. V. Shangina, N. R. Bochvar, M. V. Gorshenkov, H. Yanar, G. Purcek, and S. V. Dobatkin, “Influence of microalloying with zirconium on the structure and properties of Cu–Cr alloy after high pressure torsion,” Mater. Sci. Eng. A 650, 63–66 (2016).CrossRefGoogle Scholar
  5. 5.
    R. K. Islamgaliev, K. M. Nesterov, J. Bourgon, Y. Champion, and R. Z. Valiev, “Nanostructured Cu–Cr alloy with high strength and electrical conductivity,” J. Appl. Phys. 115, article no. 194301 (2014).CrossRefGoogle Scholar
  6. 6.
    V. I. Zel’dovich, I. V. Khomskaya, N. Yu. Frolova, A. E. Kheifets, E. V. Shorokhov, and P. A. Nasonov, “Structure of chromium–zirconium bronze subjected to dynamic channel-angular pressing and aging,” Phys. Met. Metallogr. 114 (5) 411–418 (2013).CrossRefGoogle Scholar
  7. 7.
    A. Vinogradov, V. Patlan, Y. Suzuki, K. Kitagawa, and V. I. Kopylov, “Structure and properties of ultra-fine grain Cu–Cr–Zr alloy produced by equal-channel angular pressing,” Acta Mater. 50, 1639–1651 (2002).CrossRefGoogle Scholar
  8. 8.
    A. Vinogradov, T. Ishida, K. Kitagawa, and V. I. Kopylov, “Effect of strain path on structure and mechanical behavior of ultrafine grain Cu–Cr alloy produced by equal-channel angular pressing,” Acta Mater. 53, 2181–2192 (2005).CrossRefGoogle Scholar
  9. 9.
    Q. J. Wang, C. Z. Xu, M. S. Zheng, J. W. Zhu, and Z. Z. Du, “Fatigue crack initiation life prediction of ultra-fine grain chromium–bronze prepared by equal-channel angular pressing,” Mater. Sci. Eng. A 496, 434–438 (2008).CrossRefGoogle Scholar
  10. 10.
    K. V. Valdés León, M. A. Munoz-Morris, and D. G. Morris, “Optimization of strength and ductility of Cu–Cr–Zr by combining severe plastic deformation and precipitation,” Mater. Sci. Eng. A 536, 181–189 (2012).CrossRefGoogle Scholar
  11. 11.
    G. Purcek, H. Yanar, O. Saray, I. Karaman, and H. J. Maier, “Effect of precipitation on mechanical and wear properties of ultrafine-grained Cu–Cr–Zr alloy,” Wear 311, 149–158 (2014).CrossRefGoogle Scholar
  12. 12.
    J. Li, J. Wongsa-Ngam, J. Xu, D. Shan, B. Guo, and T. G. Langdon, “Wear resistance of an ultrafine-grained Cu–Zr alloy processed by equal-channel angular pressing,” Wear 326–327, 10–19 (2015).Google Scholar
  13. 13.
    A. P. Zhilyaev, I. Shakhova, A. Morozova, A. Belyakov, and R. Kaibyshev, “Grain refinement kinetics and strengthening mechanisms in Cu–0.3Cr–0.5Zr alloy subjected to intense plastic deformation,” Mater. Sci. Eng. A 654, 131–142 (2016).CrossRefGoogle Scholar
  14. 14.
    G. Purcek, H. Yanar, M. Demirtas, Y. Alemdag, D. V. Shangina, and S. V. Dobatkin, “Optimization of strength, ductility and electrical conductivity of Cu–Cr–Zr alloy by combining multi-route ECAP and aging,” Mater. Sci. Eng. A 649, 114–122 (2016).CrossRefGoogle Scholar
  15. 15.
    R. K. Islamgaliev, K. M. Nesterov, and R. Z. Valiev, “Structure, strength, and electrical conductivity of a Cu–Cr copper-based alloy subjected to severe plastic deformation,” Phys. Met. Metallogr. 116 (2) 209–218 (2015).CrossRefGoogle Scholar
  16. 16.
    M. E. Drits, N. R. Bochvar, L. S. Guzei, E. V. Lysova, E. M. Padezhnova, L. L. Rokhlin, and N. I. Turkina, Copper-Based Binary and Multicomponent Systems (Nauka, Moscow, 1979).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • D. V. Shan’gina
    • 1
    • 2
    Email author
  • N. I. Ivanov
    • 3
  • N. R. Bochvar
    • 1
  • S. V. Dobatkin
    • 1
    • 2
  1. 1.Baikov Institute of Metallurgy and Materials Science, Russian Academy of SciencesMoscowRussia
  2. 2.Laboratory of Hybrid Nanostructured Materials, National University of Science and Technology MISiSMoscowRussia
  3. 3.Southwest State UniversityKurskRussia

Personalised recommendations