Advertisement

Russian Metallurgy (Metally)

, Volume 2018, Issue 9, pp 854–858 | Cite as

Composite Membranes Based on Pd–Cu and Pd–Pb Solid Solutions

  • V. M. IevlevEmail author
  • A. I. Dontsov
  • V. I. Novikov
  • D. A. Sinetskaya
  • S. V. Gorbunov
  • N. R. Roshan
  • G. S. Burkhanov
Article
  • 4 Downloads

Abstract

Composite membranes with a thin selective layer based on the Pd–46 at % Cu or Pd–5 at % Pb solid solution on the surface of a bilayer heterostructure with two-level porosity in the form of Kh18N10T steel/nanoporous titanium oxide (steel/rutile) are fabricated. The structure of the selective 4-μm-thick layer is found to have no through pores, and a metal does not penetrate into the nanopores in titanium oxide. The selective layer in both versions has a fine submicrocrystalline granular structure, which is caused by the presence of a second component in the Pd–Pb layer and by a two-phase composition of the Pd–Cu layer. In the temperature range 200–300°C, the hydrogen permeability of the membrane based on the two-phase Pd–Cu solid solution is higher than the membrane based on the Pd–Pb solid solution by a factor of 1.7–2.0.

Keywords:

membrane alloys structure phase composition hydrogen permeability composite membranes 

Notes

ACKNOWLEDGMENTS

This work was supported by the Ministry of Education and Science of the Russian Federation, project no. 4.7972.2017/8.9.

REFERENCES

  1. 1.
    G. S. Burkhanov, N. B. Gorina, N. B. Kol’chugina, and N. R. Roshan, “Palladium alloys for hydrogen power engineering”, Ross. Khim. Zh. (Zh. Ross. Khim. Obshchestva) L (4), 36–40 (2006).Google Scholar
  2. 2.
    A. Basile, E. Drioli, F. Santella, V. Violante, G. Capannelli, and G. Vitulli, “A study on catalytic membrane reactors for water gas shift reaction,” Gas Sep. Purif. 10 (1), 53 (1996).CrossRefGoogle Scholar
  3. 3.
    V. M. Ievlev, A. A. Maksimenko, A. I. Sitnikov, K. A. Solntsev, A. S. Chernyavskii, and A. I. Dontsov, “Composite metalloceramic heterostructure for deep hydrogen purification membranes,” Materialoved., No. 2, 37–40 (2016).Google Scholar
  4. 4.
    V. N. Lapovok, V. I. Novikov, and L. I. Trusov, “Method of production of a filtering material,” RF Patent 2040371, 1995.Google Scholar
  5. 5.
    V. I. Novikov, V. S. Vasil’kovskii, A. B. Sinyavin, and A. B. Petunin, “Method of production of a filtering material,” RF Patent 2424083, 2011.Google Scholar
  6. 6.
    V. I. Novikov and E. M. Solov’ev, “Method of production of a filtering material,” RF Patent 2579713, 2016.Google Scholar
  7. 7.
    V. S. Mitin, V. I. Novikov, A. I. Sharapaev, and A. G. Muradova, “Production of trilayer steel–TiO2–titanium composite membranes,” Membrany Membran. Tekhnol. 6 (3), 243–248 (2016).Google Scholar
  8. 8.
    A. Yu. Volkov and N. A. Kruglikov, “Effect of plastic deformation on the phase transformation kinetics in a Cu–47Pd alloy,” Fiz. Met. Metalloved. 105 (2), 215–224 (2008).Google Scholar
  9. 9.
    A. Yu. Volkov, O. S. Novikova, and V. D. Antonov, “Formation of an ordered structure in a Cu–49 at % Pd alloy,” Neorg. Mater. 48 (12), 1325–1330 (2012).Google Scholar
  10. 10.
    V. M. Ievlev, A. I. Dontsov, E. K. Belonogov, and K. A. Solntsev, “α \( \rightleftarrows \) β transformations in a Pd–57 at % Cu foil prepared by rolling,” Neorg. Mater. 53 (11), 1181–1188 (2017).Google Scholar
  11. 11.
    Hydrogen in Metals, Ed. by G. Alefeld and J. Völkl (Springer, Berlin, 1978), Vol. 1.Google Scholar
  12. 12.
    S. V. Gorbunov, S. V. Kannykin, T. N. Penkina, N. R. Roshan, E. M. Chistov, and G. S. Burkhanov, “Palladium-lead alloys for the purification of hydrogen-containing gas mixtures and the separation of hydrogen from them,” Russian Metallurgy (Metally), No. 1, 54–59 (2017).Google Scholar
  13. 13.
    V. M. Ievlev, K. A. Solntsev, A. A. Maksimenko, S. V. Kannykin, E. K. Belonogov, A. I. Dontsov, and N. R. Roshan “Formation of a thin foil of an ordered Pd–Cu solid solution with a CsCl-type lattice during magnetron sputtering,” Dokl. Akad. Nauk 457 (6), 676–680 (2014).Google Scholar
  14. 14.
    A. Van der Drift, “Evolutionary selection: a principle governing growth orientation in vapour-deposited layers,” Phil. Res. Rep. 22, 267–288 (1968).Google Scholar
  15. 15.
    Z. Nishiyama, “X-ray investigation of the mechanism of the transformation from face-centered cubic lattice to body-centered cubic,” Sci. Rep. Tohoku Imp. Univ. 23, 637–664 (1934).Google Scholar
  16. 16.
    G. Wassermann, “Influence of the α–γ transformation of an irreversible Ni steel onto crystal orientation and tensile strength,” Arch. Eisenhüttenwes B 16, S. 647 (1933).Google Scholar
  17. 17.
    E. C. Bain, “The nature of martensite,” Trans. Amer. Inst. Min. Met. Eng. 70, 25–46 (1924).Google Scholar
  18. 18.
    V. M. Ievlev, K. A. Solntsev, A. A. Maksimenko, E. K. Belonogov, S. V. Kannykin, A. A. Sinel’nikov, and D. A. Sinetskaya, “Stabilization of the ordered structure in a thin condensed foil of a Pd–Cu solid solution in a hydrogen atmosphere,” Dokl. Akad. Nauk 460 (4), 422–426 (2015).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • V. M. Ievlev
    • 1
    • 2
    Email author
  • A. I. Dontsov
    • 2
  • V. I. Novikov
    • 3
  • D. A. Sinetskaya
    • 2
  • S. V. Gorbunov
    • 4
  • N. R. Roshan
    • 4
  • G. S. Burkhanov
    • 4
  1. 1.Moscow State UniversityMoscowRussia
  2. 2.Voronezh State UniversityVoronezhRussia
  3. 3.OOO Membrane NanotechnologiesMoscowRussia
  4. 4.Baikov Institute of Metallurgy and Materials Science, Russian Academy of SciencesMoscowRussia

Personalised recommendations