Russian Metallurgy (Metally)

, Volume 2018, Issue 9, pp 826–834 | Cite as

Effect of Pulsed Helium Ion Fluxes and Helium Plasma on the Inconel 718 Alloy

  • I. V. BorovitskayaEmail author
  • V. A. GribkovEmail author
  • K. V. GrigorovichEmail author
  • A. S. DeminEmail author
  • S. A. MaslyaevEmail author
  • E. V. MorozovEmail author
  • V. N. PimenovEmail author
  • G. S. SpryginEmail author
  • A. B. ZepelevEmail author
  • M. S. GusakovEmail author
  • I. A. LogachevEmail author
  • G. G. BondarenkoEmail author
  • A. I. GaidarEmail author


The results of the irradiation of the Inconel 718 alloy with pulsed helium ion and helium plasma fluxes at a power density q = 107 W/cm2 and a pulse duration τ ≈ 100 ns in the Vikhr Plasma Focus setup are presented. The surface layer is not melted under the irradiation conditions. However, a slight increase in q causes melting of local regions in the surface and the formation of a wavy relief. Beam–plasma irradiation results in structural and phase changes in the irradiated surface layer, namely, the precipitation of microinclusions (complex niobium carbides), a redistribution of alloy elements, a slight decrease in the microhardness, and, accordingly, slight softening. These changes in the microstructure and the properties are determined by the melting of the irradiated surface in local regions, partial sputtering of solid-phase regions, and recrystallization in the near-surface layer during pulsed heating for each beam–plasma action.


Plasma Focus setup helium ions heating surface irradiation 



This work was performed within state assignment no. 007-00129-18-00 and supported by the International Atomic Energy Agency (project IAEA CRP no. 19248).


  1. 1.
    I. N. Fridlyander, O. G. Senatorova, O. E. Osintsev, Nonferrous Metals and Alloys. Composite Metallic Materials, Ed. by I. N. Fridlyander (Mashinostroenie, Moscow, 2001), V. II-3.Google Scholar
  2. 2.
    T. G. Nieh, J. Wadsworth, and O. D. Sherby, Superplasticity in Metals and Ceramics (Cambridge Univ. Press, Cambridge, 1997).CrossRefGoogle Scholar
  3. 3.
    M. A. Zlenko, M. V. Nagaitsev, V. M. Dovbysh, Additive Technologies in Mechanical Engineering: A Manual for Engineers (FGUP NAMI, Moscow, 2015).Google Scholar
  4. 4.
    A. G. Grigoryants, A. Ya. Stavertiy, and R. S. Tretyakov, “Five-axis system for the parts growing by coaxial laser melting of powder materials,” Tekhnol. Mashinostr., No. 10, 22–28 (2015).Google Scholar
  5. 5.
    A. A. Pedash, N. A. Lysenko, V. V. Klochikhin, and V. G. Shilo, “Structure and properties of Inconel 718 alloy samples prepared by selective laser melting technology,” Aviats.-Kosm. Tech. Technol., No. 8 (143), 46–53 (2017).Google Scholar
  6. 6.
    V. Barabash, K. Ioki, M. Merola, G. Sannazzaro, and N. Taylor, “Materials for the ITER vacuum vessel and in-vessel components-current status,” in Analysis of ITER Materials and Technologies: First Joint ITER-IAEA Technical Meeting (Principality of Monaco, 2010).Google Scholar
  7. 7.
    I. V. Danilov, A. Yu. Leshukov, A. V. Razmerov, M. N. Sviridenko, Yu. S. Strebkov, I. V. Mazul’, A. A. Gervash, and A. N. Labusov, “Bearing structure of the first wall of ITER blanket,” Vopr. At. Nauki Tekh., Ser.: Termoyad. Sint., 36 (1), 17–43 (2013).Google Scholar
  8. 8.
    H. K. Zhang, Z. Yao, C. Judge, and M. Griffiths, “Microstructural evolution of CANDU spacer material Ineonel X-760 under in situ ion irradiation,” Nucl. Mater. 443, 49–58 (2013).CrossRefGoogle Scholar
  9. 9.
    H. K. Zhang, Z. Yao, C. Judge, and M. Griffiths, “TEM characterization of in-reactor neutron irradiated CANDU spacer material Inconel X-750,” Nucl. Mater. 451, 88–96 (2014).CrossRefGoogle Scholar
  10. 10.
    H. K. Zhang, Z. Yao, M. R. Daymond, and M. A. Kirk, “Elevated temperature irradiation damage in CANDU spacer material Inconel X-760,” Nucl. Mater. 445, 227–234 (2014).CrossRefGoogle Scholar
  11. 11.
    C. D. Judge, V. Bhakhri, Z. Jiao, R. J. Klassen, G. Was, G. A. Botton, and M. Griffiths, “The effects of proton irradiation on the microstructural and mechanical property evolution of Inconel X-760 with high concentrations of helium,” Nucl. Mater. 492, 213–226 (2017).CrossRefGoogle Scholar
  12. 12.
    “Pinch installations, pulse sharper, and plasma focus,” in Encyclopedias of Low-Temperature Plasma. Radiation Plasmodynamics, Ed. by V. E. Fortov and V. A. Gribkov (Janus-K, Moscow, 2007), Vol. IX-3, Ch. 3, pp. 16–26.Google Scholar
  13. 13.
    V. A. Gribkov, A. Banaszak, B. Bienkowska, A. V. Dub-rovsky, I. Ivanova-Stanik, L. Jakubowski, L. Karpinski, R. A. Miklaszewski, M. Paduch, M. J. Sadowski, M. Seholz, A. Szydlowski, and K. Tomaszewski, “Plasma dynamics in PF-1000 device under the full-scale energy storage. II. Fast electrons and ions characteristics versus neutron emission parameters, and the gun optimization properties,” Phys. D: Appl. Phys. 40, 3592–3607 (2007).CrossRefGoogle Scholar
  14. 14.
    G. G. Bondarenko, Radiation Physics, Structure, and Strength of Solids (Laboratoriya Znanii, Moscow, 2016).Google Scholar
  15. 15.
    V. N. Pimenov, S. A. Maslyaev, L. I. Ivanov, E. V. Dyomina, V. A. Gribkov, A. V. Dubrovsky, M. Scholz, R. Miklaszewski, Yu. E. Ugaste, and B. Kolman, “Surface and bulk processes in materials induced by pulsed ion and plasma beams at Dense Plasma Focus devices,” Nukleonika 51 (1), 71–78 (2006).Google Scholar
  16. 16.
    V. A. Gribkov, A. S. Demin, E. V. Demina, A. V. Dub-rovsky, S. A. Maslyaev, V. N. Pimenov, M. D. Prusakova, I. P. Sasinovskaya, M. Scholz, and L. Karpinski, “Effect of extreme energy flux on Cr–Mn austenite steel modified with Sc,” Fiz. Khim. Obrab. Mater., No. 4, 5–12 (2012).Google Scholar
  17. 17.
    Yu. V. Martynenko, “Movement of melt metal layer and droplet erosion under plasma flow action typical for ITER transient regimes,” Vopr. At. Nauki Tekh., Ser.: Termoyad. Sint., 37 (2), 53–59 (2014).Google Scholar
  18. 18.
    S. A. Maslyaev, “Thermal effects during pulsed irradiation of materials in a Plasma focus setup,” Perspekt. Mater. No. 5, 47–55 (2007).Google Scholar
  19. 19.
    Physical Values: A Handbook, Ed. by I. S. Grigor’ev and E. Z. Mikhailov (Energoizdat, Moscow, 1991).Google Scholar
  20. 20.
    S. V. Maksimova and V. F. Khounov, “Structure of joints of heat-resistant nickel Inconel 718 alloy manufactured by high-temperature vacuum brazing,” Sovrem. Elektrometall., Nov. Mater., No. 3, 49–55 (2010).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Baikov Institute of Metallurgy and Materials Science, Russian Academy of SciencesMoscowRussia
  2. 2.JSC KompositKorolevRussia
  3. 3.National Research University, Higher School of EconomicsMoscowRussia
  4. 4.Research Institute of Advanced Materials and TechnologiesMoscowRussia
  5. 5.National Research Nuclear University MEPhIMoscowRussia

Personalised recommendations