Russian Metallurgy (Metally)

, Volume 2018, Issue 9, pp 835–853 | Cite as

On the Superconductivity Mechanism in Yttrium Ceramic Used as an Example

  • O. K. Belousov
  • N. A. PaliiEmail author


The nature of the superconducting state of the yttrium high-temperature superconductor is discussed, and the causes and mechanism of superconductivity are considered. A perovskite structure is used as an example to calculate the bond length and the lengths of elastic and electron waves. The Fermi energy and the charge density sphere radius are calculated. The first ionization potential of copper is, in essence, the kinetic energy of an elastic longitudinal wave. A hypothesis is advanced to explain the origin of superconductivity in this superconductor.


high-temperature superconductor (HTSC) bond length ionization potential elastic wave energy dicopper 



This work was performed in terms of state task 007‑00129-18-00.


  1. 1.
    E. G. Maksimov, “Problem of high-temperature superconductivity. State of the art,” Usp. Fiz. Nauk 170 (10), 1033–1061 (2000).CrossRefGoogle Scholar
  2. 2.
    W. Wong-Ng, R. S. Roth, T. A. Vanderah, and H. P. McMurdie, “Phase equilibria and crystallography of ceramic oxides,” J. Res. Nat. Inst. Stand. Technol. 106 (6), 1097 (2001).CrossRefGoogle Scholar
  3. 3.
    D. G. Hinks, L. Soderholm, D. W. Capone, J. D. Jorgensen, I. K. Schuller, C.U. Segre, et al., “Phase diagram and superconductivity in the Y–Ba–Cu–O system,” Appl. Phys. Lett. 50 (23), 1688–1690 (1987).CrossRefGoogle Scholar
  4. 4.
    J. Hauck, K. Bickmann, and F. Zucht, “Oxygen content of superconducting Ba2YCu3O6.5 + x,” Z. Phys. B Condens. Matter. 67 (3), 299–302 (1987).CrossRefGoogle Scholar
  5. 5.
    J. D. Jorgensen et al., “Structural and superconducting properties of orthorhombic and tetragonal YBa2Cu3O7 – x: The effect of oxygen stoichiometry and ordering on superconductivity,” Phys. Rev. B 36 (10), 5731 (1987).CrossRefGoogle Scholar
  6. 6.
    G. F. Voronin, “Thermodynamic properties and stability of yttrium superconducting ceramic,” Zh. Vses. Khim. O-va im. D.I. Mendeleeva 34, 466–473 (1989).Google Scholar
  7. 7.
    G. Voronin and S. Degtyarev, “Thermodynamic properties of superconductors in Y–Ba–Cu–O system. 1. YBa2Cu3O6 + Z phase,” Zh. Fiz. Khim. 67 (7), 1351–1354 (1993).Google Scholar
  8. 8.
    P. Strobel, J. J. Capponi, M. Marezio, and P. Monod, “High-temperature oxygen defect equilibrium in superconducting oxide YBa2Cu3O7 – x,” Solid State Commun. 64 (4), 513–515 (1987).CrossRefGoogle Scholar
  9. 9.
    O. K. Belousov and N. A. Palii, “On the problem of the superconducting transition temperature,” Russ. Metall. (Metally), No. 7, 572–587 (2012).Google Scholar
  10. 10.
    G. Ceder, “A computational study of oxygen ordering in YBa2Cu3O7 and its relation to superconductivity,” Mol. Simulation 12 (2), 141–153 (1994).CrossRefGoogle Scholar
  11. 11.
    J. D. Jorgensen et al., “Oxygen vacancy ordering and superconductivity in YBa2Cu3O7 – x,” Physica C: Superconductivity 153, 578–581 (1988).CrossRefGoogle Scholar
  12. 12.
    S. A. Degterov and G. F. Voronin, “Phase equilibria and stability of superconductors in the Y–Ba–Cu–O system,” Physica C: Superconductivity 178 (1), 213–220 (1991).CrossRefGoogle Scholar
  13. 13.
    A. G. Khachaturyan and J. W. Morris, Jr., “Ordering and decomposition in the high-temperature superconducting compound YBa2Cu3Ox,” Phys. Rev. Lett. 59 (24), 2776 (1987).CrossRefGoogle Scholar
  14. 14.
    P. Meuffels, B. Rupp, and E. Pörschke, “Physical and structural properties of YBa2Cu3Ox prepared by a defined sorption technique,” Physica C: Superconductivity 156 (3), 441–447 (1988).CrossRefGoogle Scholar
  15. 15.
    Y. Hariharan et al., “Oxygen ordering and superconductivity in YBa2Cu3O7 – δ,” Pramana 31 (1), L59–L65 (1988).CrossRefGoogle Scholar
  16. 16.
    M. M. Milic, “Study on the pressure effect in YBa2Cu3Ox as a function oxygen content x,” J. Low Temp. Phys. 170 (3–4), 152–159 (2013).Google Scholar
  17. 17.
    G. F. Voronin and S. A. Degterov, “Thermodynamics of superconducting phases in the Y–Ba–Cu–O system,” Physica C: Superconductivity 176 (4–6), 387–408 (1991).Google Scholar
  18. 18.
    I. E. Graboi, I. V. Zubov, and A. S. Ilyushin, “Effect of oxygen nonstoichiometry on the structure and physical properties of YBa2Cu3O7 – x,” Fiz. Tverd. Tela 30 (11), 3436–3441 (1988).Google Scholar
  19. 19.
    O. K. Belousov, B. P. Mikhailov, and N. A. Palii, “On the role of acoustic phonons in superconductivity,” Russ. Metall. (Metally), No. 11, 876–887 (2014).Google Scholar
  20. 20.
    H. Ledbetter, “Elastic properties of metal–oxide superconductors,” JOM 40 (1), 24–30 (1988).CrossRefGoogle Scholar
  21. 21.
    N. M. N. Alford et al., “Physical and mechanical properties of YBa2Cu3O7 – δ superconductors,” J. Mater. Sci. 23 (3), 761–768 (1988).CrossRefGoogle Scholar
  22. 22.
    K. Ganesh et al., “Elastic behaviour of some YBaCuO high T c superconducting materials with various oxygen concentrations,” J. Alloys Comp. 230 (1), 23–29 (1995).CrossRefGoogle Scholar
  23. 23.
    C. Fanggao et al., “A comparative study of the high-Tc electron superconductor Nd1.85Ce0.15CuO4 – y and its parent compound Nd2CuO4 – y,” Supercond. Sci. Technol. 3 (8), 422 (1990).CrossRefGoogle Scholar
  24. 24.
    O. K. Belousov, “Elastic constants and plasticity of Cu–Zn alloys,” Russ. Metall. (Metally), No. 1, 106–111 (2001).Google Scholar
  25. 25.
    O. K. Belousov, “Relaxation of the elastic characteristics of copper and its entropy” Izv. Ross. Akad. Nauk, Ser. Met., No. 3, 97–102 (1995).Google Scholar
  26. 26.
    M. Leibfrid, Microscopic Theory of the Mechanical and Thermal Properties of Crystals (Gosfizmatlit, Moscow, 1963).Google Scholar
  27. 27.
    Yu. K. Kovneristyi and O. K. Belousov, “Dynamic stability of metallic phases,” Izv. Ross. Akad. Nauk, Ser. Met., No. 4, 134–135 (1985).Google Scholar
  28. 28.
    M. Lei et al., “Elastic constants of a monocrystal of superconducting YBa2Cu3O7–δ,” Phys. Rev. B 47 (10), 6154–6156 (1993).CrossRefGoogle Scholar
  29. 29.
    L. Pauling, “On the nature of the bonding in Cu2: a comment,” J. Chem. Phys. 78 (6), Pt. 1, 3346 (1983).Google Scholar
  30. 30.
    L. Pauling, Nature of Chemical Bond (Goskhimizdat, Leningrad, 1947).Google Scholar
  31. 31.
    W.E. Alnaser et al., “The mechanical and structural properties of YBa2Cu3O7 – x superconductors,” J. Mater. Sci. 29 (2), 482–485 (1994).CrossRefGoogle Scholar
  32. 32.
    C. S. Pande et al., “Domainlike defects observed in the high- temperature superconductor Y–Ba–Cu–O,” Phys. Rev. B 36 (10), 5669–5671 (1987).CrossRefGoogle Scholar
  33. 33.
    H. A. Hoff, A. K. Singh, and C. S. Pande, “Correlation of “twins” observed by optical microscopy and transmission electron microscopy in YBa2Cu3O7 – x superconductors,” Appl. Phys. Lett. 52 (8), 669–671 (1988).CrossRefGoogle Scholar
  34. 34.
    L. Pauling, “The resonating-valence-bond theory of superconductivity: crest superconductors and through superconductors,” Proc. Nat. Acad. Sci. 60 (1), 59–65 (1968).CrossRefGoogle Scholar
  35. 35.
    L. Pauling, “Influence of valence, electronegativity, atomic radii, and crest-trough interaction with phonons on the high-temperature copper oxide superconductors,” Phys. Rev. Lett. 59 (2), 225–227 (1987).CrossRefGoogle Scholar
  36. 36.
    O. K. Belousov, “Calculation of the binding energy in metals and covalent crystals,” Metally, No. 1, 33–40 (1994).Google Scholar
  37. 37.
    J. M. Ziman, Principles of the Theory of Solids (Cambridge Univ. Press, Cambridge, 1972).CrossRefGoogle Scholar
  38. 38.
    A. M. Balagurov, L. G. Mamsurova, I. A. Bobrikov, et al., “Structural disordering effects in fine-crystalline YBa2Cu3O7 HTSC,” ZhETF 141 (6), 1144–1155 (2012).Google Scholar
  39. 39.
    F. Krauford, Waves: Tutorial, Ed. by A. I. Shal’nikov and A. O. Vaisenberg (Nauka, Moscow, 1984).Google Scholar
  40. 40.
    L. R. Morss, D. C. Sonnenberger, and R. J. Thorn, “Thermochemistry of rare-earth-metal-alkaline-earth-metal-copper oxide superconductors,” Inorg. Chem. 27 (12), 2106–2110 (1988).CrossRefGoogle Scholar
  41. 41.
    K. Khauffe, Reactions in Solids and Their Surfaces (Inostr. Lit., Moscow, 1962).Google Scholar
  42. 42.
    N. Aslund et al., “Rotational analysis of bands of BX system of Cu2 and of AX system of B12,” Ark. Fysik. 30 (2), 171 (1965).Google Scholar
  43. 43.
    O. K. Belousov, “On the entropy of melting of simple substances,” Metally, No. 4, 42–46 (1993).Google Scholar
  44. 44.
    W. I. F. David et al., “Structure and crystal chemistry of the high-Tc superconductor YBa2Cu3O7 – x,” Nature 327 (6120), 310–312 (1987).CrossRefGoogle Scholar
  45. 45.
    J. D. Jorgensen et al. “Oxygen ordering and the orthorhombic-to-tetragonal phase transition in YBa2Cu3O7 – x,” Phys. Rev. B 36 (7), 3608–3616 (1987).CrossRefGoogle Scholar
  46. 46.
    H. M. Ledbetter et al., “Elastic constants and Debye temperature of polycrystalline YBa2Cu3O7 – x,” J. Mater. Res. 2 (6), 786–789 (1987).CrossRefGoogle Scholar
  47. 47.
    H. Maruyama et al., “Temperature dependence of the EXAFS spectrum in YBa2Cu3O7 – δ compounds,” Physica C: Superconductivity 160 (5–6), 524–532 (1989).Google Scholar
  48. 48.
    J. E. Greedan, A. O’Reilly, and C. V. Stager, “Oxygen ordering in the crystal structure of the 93 K superconductor YBa2Cu3O7 using powder neutron diffraction at 298 and 79.5 K,” Phys. Rev. B 35 (16), 8770–8773 (1987).CrossRefGoogle Scholar
  49. 49.
    J. B. Boyce et al., “Temperature dependence of the local structure of YBa2Cu3O7 – δ with varying oxygen content: an X-ray-absorption study,” Phys. Rev. B 39 (10), 6555–6566 (1989).CrossRefGoogle Scholar
  50. 50.
    F. E. Bates, “Normal modes of tetragonal YBa2Cu3O6 and orthorhombic YBa2Cu3O7,” Phys. Rev. B 39 (1), 322–327 (1989).CrossRefGoogle Scholar
  51. 51.
    G. B. Bokii, Crystal Chemistry (Nauka, Moscow, 1971).Google Scholar
  52. 52.
    Ch. Koulson, Valence (Mir, Moscow, 1965).Google Scholar
  53. 53.
    D. Bleikmor, Solid State Physics, Ed. by D. G. Andrianov and V. I. Fistul’ (Mir, Moscow, 1988).Google Scholar
  54. 54.
    J. Chijsen, L.H. Tjeng, et al. “Electron structure of Cu2O and CuO,” Phys. Rev. B 38 (6), 11322–11330 (1988).CrossRefGoogle Scholar
  55. 55.
    V. V. Osipov and A. A. Samokhvalov, “Giant electrical conductivity anomaly in the CuO–Cu interface,” Fiz. Met. Metalloved. 89 (5), 43–46 (2000).Google Scholar
  56. 56.
    M. W. Chase, Jr., “JANAF thermochemical table,” J. Phys. Chem. Ref. Data 14, Supplement 1 (1985).Google Scholar
  57. 57.
    A. Animalu, Quantum Theory of Crystalline Solids (Mir, Moscow, 1988).Google Scholar
  58. 58.
    V. V. Migulin and V. I. Medvedev, Fundamentals of the Theory of Oscillations (Nauka, Moscow, 1978).Google Scholar
  59. 59.
    A. Novik and B. Berri, Relaxation Phenomena in Crystals (Atomizdat, Moscow, 1975).Google Scholar
  60. 60.
    K. A. Osipov and O. K. Belousov, “Calculation of the superconducting transition temperature for the YBa2Cu3O7 – x and La1.85Sr0.15CuO4 – y compounds,” Dokl. Akad. Nauk SSSR 300 (4), 901–903 (1988).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Baikov Institute of Metallurgy and Materials Science, Russian Academy of SciencesMoscowRussia

Personalised recommendations