Advertisement

Russian Metallurgy (Metally)

, Volume 2018, Issue 8, pp 787–791 | Cite as

Experimental Evaluation of the Interaction of Titanium and Gadolinium Oxides with Aluminum

  • L. B. Vedmid’Email author
  • E. M. Zhilina
  • S. A. Krasikov
  • A. G. Merkushev
Article
  • 13 Downloads

Abstract

The sequence of formation of compounds in the Al–TiO2–Gd2O3 system is determined using theoretical and experimental evaluations of the aluminothermic reduction of titanium and gadolinium from oxides. The reduction has two stages and proceeds via the stage of titanium monoxide formation followed by the formation of the Al3Ti and GdAl2 intermetallic compounds.

Keywords:

titanium alloy aluminothermic reduction phase formation gadolinium intermetallic compounds 

Notes

ACKNOWLEDGMENTS

The experimental studies were carried out on the equipment of the Center for Collective Use URAL-M, Institute of Metallurgy, Ural Branch, Russian Academy of Sciences.

This work was supported by the federal target program “Investigation and Developments on Priority Trends of the Scientific Technological Complex of Russia for 2014–2020” (agreement no. 14.578.21.0200, theme “Development of Technology of the Production of Ceramic Units and Details by Selective Laser Smelting Using Innovative Methods for Diagnostics of the Processes and Produced Units,” unique identifier PNIER RFMEFI57816X0200).

REFERENCES

  1. 1.
    I. A. Grishin, S. V. Skvortsova, K. A. Speranskii, A. A. Demakov, and N. A. Mamontova, “Influence of additional alloying with gadolinium on the structure and properties of the experimental heat-resistant titanium alloy in the cast and deformed states,” Titan, No. 1, 16–21 (2017).Google Scholar
  2. 2.
    W. Li, B. Inkson, Z. Horita, and K. Xia, “Microstructure observations on the rare earth element Gd-modified Ti–44 at % Al,” Intermetallics, No. 8, 519–523 (2000).CrossRefGoogle Scholar
  3. 3.
    Y. N. Berdovsky, Intermetallics Research Progress (Nova Science, 2008).Google Scholar
  4. 4.
    D. E. Andreev, V. N. Sanin, and V. I. Yukhvid, “SVS metallurgy of titanium aluminides,” Int. J. SNS 14, No. 3, 219–234 (2005).Google Scholar
  5. 5.
    C. Colinet, A. Pasturel, and K. H. J. Buschov, “Cohesive properties in the Al–Gd system,” Physica B 150, 397–403 (2008).CrossRefGoogle Scholar
  6. 6.
    A. Roine, Outokumpu HSC Chemistry for Windows. Chemical Reaction and Equilibrium Software with Extensive Thermochemical Database (Outokumpu Research OY, Pori, 2006), p. 448.Google Scholar
  7. 7.
    G. K. Moiseev and G. P. Vyatkin, Thermodynamic Simulation in Inorganic Systems: Textbook (YuUrGU, Chelyabinsk, 1999).Google Scholar
  8. 8.
    Y. R. Mahajan, S. D. Kirchoff, and F. H. Froes, “Thermal stability of rapidly solidified Al–Ti–Gd alloy,” Scr. Metall. 20, 643–647 (1986).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • L. B. Vedmid’
    • 1
    • 2
    Email author
  • E. M. Zhilina
    • 1
  • S. A. Krasikov
    • 1
  • A. G. Merkushev
    • 2
  1. 1.Institute of Metallurgy, Ural Branch, Russian Academy of SciencesYekaterinburgRussia
  2. 2.Ural Federal UniversityYekaterinburgRussia

Personalised recommendations