Russian Metallurgy (Metally)

, Volume 2018, Issue 8, pp 777–782 | Cite as

Synthesis of Yttrium Intermetallic Compounds on the Surface of Copper Samples in an NaCl–KCl Melt

  • I. V. TolstobrovEmail author
  • O. V. El’kin
  • A. N. Bushuev
  • D. A. Kondrat’ev
  • V. A. Kozvonin


Cyclic voltammetry is used to study the cathode reduction of yttrium ions on a copper electrode in an YCl3-containing NaCl–KCl melt at 1023 K. The potentials of formation of copper–yttrium compounds are determined. Samples of Cu6Y, Cu4Y, Cu2Y, and CuY alloy coatings are prepared by controlled potential electrolysis; samples of Cu6Y and Cu4Y alloy coatings are prepared by no-current diffusion saturation at 973 and 1023 K. It was found that the samples prepared by no-current diffusion saturation are thicker than those prepared by electrolysis. However, the controlled potential electrolysis allowed us to prepare coatings of a given composition.


intermetallic compounds copper yttrium cyclic voltammetry controlled potential electrolysis no-current transfer diffusion saturation 



  1. 1.
    E. M. Savitsky, Prospects for the Development of Metal Science (Nauka, Moscow, 1972).Google Scholar
  2. 2.
    O. Petrii, S. Vasina, and I. Korobov, “Electrochemistry of hydride-forming compounds and alloys,” Usp. Khim. 65 (3), 195–210 (1996).Google Scholar
  3. 3.
    A. F. Dresvyannikov and S. Yu. Sitnikov, “Modern aspects of hydrogen storage,” Probl. Energetiki, Nos. 3–4, 72–84 (2006).Google Scholar
  4. 4.
    A. M. Asanov, Kh. B. Kushkhov, and D. L. Shogenova, “Electrochemical synthesis of yttrium and cobalt intermetallic nanoparticles,” Rasplavy, No. 2, 80–87 (2015).Google Scholar
  5. 5.
    S. A. Nikitin, Magnetic Properties of Rare-Earth Metals and Alloys (MGU, Moscow, 1989).Google Scholar
  6. 6.
    W. Han, Q. Sheng, M. Zhang, M. Li, T. Sun, Y. Liu, K. Ye, Y. Yan, and Y. Wang, “The electrochemical formation of Ni–Tb intermetallic compounds on a nickel electrode in the LiCl–KCl eutectic melts,” Metall. Mater. Trans. 45, 929–935 (2014).CrossRefGoogle Scholar
  7. 7.
    H. Yamamoto, K. Kuroda, R. Ichino, and M. Okido, “Potential response during the formation of the La–Ni alloy after molten salt electrolysis,” Electrochem. 68 (7), 591–595 (2000).Google Scholar
  8. 8.
    H. Konishi, T. Nohira, and Y. Ito, “Kinetics of DyNi2 film growth by electrochemical implantation,” Electrochim. Acta. 48, 563–568 (2003).CrossRefGoogle Scholar
  9. 9.
    G. Xie, K. Ema, Y. Ito, and Zh. M. Shou, “Electrochemical formation of Ni–Y intermetallic compound layer in molten chloride,” J. Appl. Electrochem. 23, 753–759 (1993).CrossRefGoogle Scholar
  10. 10.
    Kh. B. Kushkhov, D. L. Shogenova, Kh. A. Zheligashtov, and R. A. Shamparova, “Electrochemical synthesis of yttrium–aluminum intermetallics in chlorine–fluorine melts,” in Proceedings of the XV Russian Conf. on Physical Chemistry and Electrochemistry of Molten and Solid Electrolytes (Nalchik, 2010), pp. 215–217.Google Scholar
  11. 11.
    D. L. Shogenova and Kh. B. Kushkhov, “Electrochemical synthesis of yttrium borides and binary yttrium borides with iron-group metals,” Perspektivnye Mater., No. 9, 301–304 (2010).Google Scholar
  12. 12.
    L. M. Glukhov, A. A. Greish, and L. M. Kustov, “Electrochemical deposition of Y, Gd, and Yb rare-earth metals in ionic liquids,” Kolloidn. Khim. Elektrokhim. 84 (1), 111–115 (2010).Google Scholar
  13. 13.
    I. M. Neklyudov, V. N. Voevodin, S. V. Shevchenko, et al., “Effect of alloying with yttrium on the mechanical properties of pure copper,” Nauchn. Vedom. Belarus Gos. Univ., No. 2, 66–74 (1997).Google Scholar
  14. 14.
    V. N. Fedorov and A. A. Zhurba, “Effect of yttrium on the properties of copper,” Izv. Akad. Nauk SSSR, Met., No. 1, 166–196 (1975).Google Scholar
  15. 15.
    Z. Xiao, H. Geng, C. Sun, P. Jia, and H. Luo, “Effect of yttrium on properties of copper prepared by powder metallurgy,” Adv. Powder Technol. 26, 1079–1086 (2015).CrossRefGoogle Scholar
  16. 16.
    G. E. Revzin, Anhydrous Chlorides of Rare-Earth Elements and Scandium. Methods of Production and Chemical Preparations (IREA, Moscow, 1967), Vol. 16, pp. 124–129.Google Scholar
  17. 17.
    D. I. Ryabchikov and V. A. Ryabukhin, Analytical Chemistry of Rare-Earth Elements and Yttrium (Nauka, Moscow, 1966).Google Scholar
  18. 18.
    M. V. Smirnov, Electrode Potentials in Molten Chlorides (Nauka, Moscow, 1973).Google Scholar
  19. 19.
    I. V. Tolstobrov and O. V. El’kin, “Electrochemical reduction of yttrium ions on a cobalt substrate,” Byul. Kazan’ Technol. Univ. 19 (15), 103–105 (2016).Google Scholar
  20. 20.
    P. Taxil, L. Massot, C. Nourry, M. Gibilaro, P. Chamelot, and L. Cassayre, “Lanthanides extraction processes in molten fluoride media: application to nuclear spent fuel reprocessing,” J. Fluorine Chem. 130, 94–101 (2009).CrossRefGoogle Scholar
  21. 21.
    Binary Phase Diagrams of Metallic Systems: Handbook, Ed. by. N. P. Lyakishev (Mashinostroenie, Moscow, 1996).Google Scholar
  22. 22.
    L. G. Voroshnin, B. M. Khusid, B. Kh. Khina, and A. V. Nikopchik, “Theoretical aspects of the formation and growth of phases in protective coatings,” in Study and Development of Theoretical Problems in Powder Metallurgy and Protective Coatings (Minsk, 1984), Part 3, pp. 44–51.Google Scholar
  23. 23.
    O. V. El’kin, A. V. Kovalevsky, and V. V. Chebykin, “Production of diffusion nickel–samarium coatings by no-current transfer in the LiCl–KCl–SmCl3 melt,” Galvanotekhnika Obrab. Poverkhnosi 18 (2), 31–36 (2010).Google Scholar
  24. 24.
    O. V. El’kin and A. V. Kovalevsky, “Formation of alloy coatings by no-current disffusion saturation of nickel by ytterbium in an LiCl–KCl–YbCl3 melt,” Rus. Metall., No. 5, 389–391 (2013).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • I. V. Tolstobrov
    • 1
    Email author
  • O. V. El’kin
    • 1
  • A. N. Bushuev
    • 1
  • D. A. Kondrat’ev
    • 1
  • V. A. Kozvonin
    • 1
  1. 1.Vyatka State UniversityKirovRussia

Personalised recommendations