Advertisement

Russian Metallurgy (Metally)

, Volume 2018, Issue 8, pp 722–727 | Cite as

Mechanism and Caloric Effects of the Thermal Dehydration of GdCl3 ⋅ 6H2O Crystalline Hydrate

  • I. V. Korzun
  • I. D. Zakir’yanovaEmail author
  • E. V. Nikolaeva
Article
  • 6 Downloads

Abstract—The thermal dehydration of GdCl3 ⋅ 6H2O crystalline hydrate is studied by synchronous thermal analysis and mass spectrometry using certified samples. The mechanism and the caloric effects of the chemical reactions are determined. The thermal decomposition of GdCl3 ⋅ 6H2O crystalline hydrate is accompanied by hydrolysis, leading to the formation of oxychloride GdOCl.

Keywords:

dehydration crystalline hydrate gadolinium chloride synchronous thermal analysis mass spectrometry 

Notes

ACKNOWLEDGMENTS

The authors are grateful to B.D. Antonov (Center for Collective Use Composition of Matter, Institute of High-Temperature Electrochemistry, Ural Branch, Russian Academy of Sciences) for performing the XRD analysis.

This work was supported in part by the Russian Foundation for Basic Research, project no. 18-03-00561a.

REFERENCES

  1. 1.
    C. K. Gupta and N. Krishnamurthy, Extractive Metallurgy of Rare Earths (CRC PRESS, London, 2005).Google Scholar
  2. 2.
    W. Wendlandt, “The thermal decomposition of yttrium, scandium, and some rare-earth chloride hydrates,” J. Inorg. Nucl. Chem. 5, 118–122 (1957).Google Scholar
  3. 3.
    W. Wendlandt, “The thermal decomposition of the heavier rare earth metal chloride hydrates,” J. Inorg. Nucl. Chem. 5, 136–139 (1959).Google Scholar
  4. 4.
    S. Ashcroft and C. Mortimer, “The thermal decomposition of lanthanide(III) chloride hydrates,” J. Less-Common Metals 14, 403–406 (1968).Google Scholar
  5. 5.
    N. P. Sokolova and E. A. Ukraintsev, “Pressure of dissociation of some crystalline hydrates of lanthanide chlorides,” Izv. Sib. Otd. Akad. Nauk SSSR, Ser. Khim., No. 1, 24–25 (1984).Google Scholar
  6. 6.
    V. V. Hong and J. Sundstrum, “The dehydration schemes of rare-earth chlorides,” Thermochim. Acta 307, 37–43 (1997).Google Scholar
  7. 7.
    Tae-Kyo Lee, Yong-Zun Cho, Hee-Chul Eun, Sung-Mo Som, In-Tae Kim, and Taek-Sung Hwang, “A study on dehydration of rare earth chloride hydrate,” J. Korean Radioactive Waste Soc. 10, 125–132 (2012).Google Scholar
  8. 8.
    V. N. Makatun, Chemistry of Inorganic Hydrates (Nauka i Tekhnika, Moscow, 1985).Google Scholar
  9. 9.
    Y. Hase, P. Dunstan, and M. Temperini, “Raman active normal vibrations of lanthanide oxychlorides,” Spectrochim. Acta A: Mol. Spectrosc. 37 597–599 (1981).Google Scholar
  10. 10.
    L. Basile, J. Ferraro, and D. I. R. Gronert, “Spectra of several lanthanide oxyhalides,” J. Inorg. Nucl. Chem. 33, 1053–1074 (1971).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • I. V. Korzun
    • 1
  • I. D. Zakir’yanova
    • 1
    • 2
    Email author
  • E. V. Nikolaeva
    • 1
    • 2
  1. 1.Institute of High-Temperature Electrochemistry, Ural Branch, Russian Academy of SciencesYekaterinburgRussia
  2. 2.Ural Federal UniversityYekaterinburgRussia

Personalised recommendations