Advertisement

Russian Metallurgy (Metally)

, Volume 2018, Issue 8, pp 750–757 | Cite as

Thermodynamic Simulation of the AIII–BV Semiconductor Melts

  • N. I. Il’inykh
  • I. A. Malkova
Article
  • 10 Downloads

Abstract

The equilibrium compositions and the thermodynamic characteristics of binary Ga–Sb, Al–Sb, and In–Sb melts are studied by a thermodynamic simulation using the TERRA software package over wide temperature and composition ranges. The temperature dependences of the partial pressures of the components of the gas phase forming above the III–V (III = Ga, In; V = Sb) semiconductor melts are investigated. The concentration dependences of the component activities and the partial and integral characteristics of melt mixing are obtained. All melts under study are shown to exhibit large negative deviations from Raoult’s law, which is caused by the presence of associates and indicates a strong interaction between the melt components. The temperature dependences of the logarithms and the partial pressures of the gas phase components are obtained. These dependences are shown to be linear for the components of the gas phase forming over the Ga–Sb, Al–Sb, and In–Sb melts.

Keywords:

semiconductor materials gallium antimony aluminum indium thermodynamic simulation melt gas phase properties 

Notes

REFERENCES

  1. 1.
    D. V. Igumnov anbd G. P. Kostyunina, “Fundamentals of Semiconductor Electronics: Tutorial (Goryachaya Liniya, Moscow, 2005).Google Scholar
  2. 2.
    N. Mott and E. Davis, Electronic Processes in Noncrystalline Substances (Mir, Moscow, 1982).Google Scholar
  3. 3.
    V. S. Sorokin, B. L. Antipov, and N. P. Lasareva Materials and Elements of Electronic Engineering: Tutorial. Vol. 1. Conductors, Semiconductors, Dielectrics (Academia, Moscow, 2006).Google Scholar
  4. 4.
    B. I. Goroschkov and A. B. Goroshkov, Electronic Engineering: Textbook (Izd. Tsentr Akademiya, Moscow, 2008).Google Scholar
  5. 5.
    V. V. Pasinkov and B. S. Sorokin, Materials of Electronic Engineering: Textbook (Izd. Lan’, St. Petersburg, 2004).Google Scholar
  6. 6.
    V. A. Prostakova, “Calculation of phase diagrams of ternary systems M–Ga–Sb (M = In, Al),” Vestn. Mosk. Univ., Ser. 2, Khimiya 52 (2), 83–91 (2011).Google Scholar
  7. 7.
    S. S. Strel’chenko and V. V. Lebedev, III–V Compounds: A Handbook (Metallurgiya, Moscow, 1984).Google Scholar
  8. 8.
    http://markmet.ru/diagrammy-splavov/svyaz-mezhdu-svoistvami-splavov-i-tipom-diagram-my-sostoyaniya.Google Scholar
  9. 9.
    T. L. Ngai, R. C. Sharma, and Y. A. Chang, “Gallium–antimony binary alloy phase diagram,” Bull. Alloy Phase Diagrams 9 (5), 586–591 (1988).Google Scholar
  10. 10.
    Phase Diagrams of Binary Metallic Systems: A Handbook, Ed. by N. P. Lyakishev (Mashinostroenie, Moscow, 1996–2000).Google Scholar
  11. 11.
    M. Hansen and K. Anderko, Constitution of Binary Alloys (McGraw-Hill, New York, 1962).Google Scholar
  12. 12.
    Ya. A. Ugai, Introduction to the Chemistry of Semiconductors: Textbook for Institutes of Higher Education (Vysshaya Shkola, Moscow, 1975).Google Scholar
  13. 13.
    http://www.xumuk.ru/encyklopedia/885.html.Google Scholar
  14. 14.
    C. R. A. Wright, J. Soc. Chem. Ind. 11, 493–494 (1982).Google Scholar
  15. 15.
    O. A. Bannykh, P. B. Budberg, S. P. Alisova, et al., Phase Diagrams of Binary and Multicomponent Systems Based on Iron (Metallurgiya, Moscow, 1986).Google Scholar
  16. 16.
    http://markmet.ru/diagrammy-splavov/diagramma-sostoyaniya-sistemy-alyuminii-%E2%80%93-surma-al-sb.Google Scholar
  17. 17.
    T. B. Massalski, Binary Alloy Phase Diagrams (American Society for Metals. Metals Park, Ohio, 1986).Google Scholar
  18. 18.
    G. B. Sinyarev, N. A. Vatolin, B. G. Trusov, and G. K. Moiseev, The Use of IBM for the Thermodynamic Calculations of Metallurgical Processes (Nauka, Moscow, 1983).Google Scholar
  19. 19.
    N. A. Vatolin, G. K. Moiseev, and B. G. Trusov, Thermodynamic Simulation in the High-Temperature Inorganic Systems (Metallurgiya, Moscow, 1994).Google Scholar
  20. 20.
    B. G. Trusov, “Program system for modeling phase and chemical equilibria at high temperatures,” Vestn. MGTU im. N.E. Baumana, 240–249 (2012).Google Scholar
  21. 21.
    I. Prigogine and R. Defay, Chemical Thermodynamics (Longmans Green and Co., London, 1954).Google Scholar
  22. 22.
    N. I. Il’inykh, T. V. Kulikova, and G. K. Moiseev, “Composition and Equilibrium Characteristics of the Metallic Melts of Binary Systems Based on Iron, Nickel and Aluminum (UrO RAN, Yekaterinburg, 2006).Google Scholar
  23. 23.
    E. A. Volgarev, I. A. Malkova, and N. I. Il’inykh, “Thermodynamic modeling of III–V semiconductor compounds,” in Proceedings of Interuniversity Scientific Seminar on Information Technologies and Cognitive Telecommunications, Ed. by E. A. Subbotin (UrTISI SibGUTI, Yekaterinburg, 2015), pp. 68–72.Google Scholar
  24. 24.
    I. A. Malkova, E. A. Volgarev, and N. I. Il’inykh, “Temperature dependences of the partial pressures of phase components abovep ressures of gas phase above Ga–Sb, In–Sb and Al–Sb melts,” in Proceedings of Interuniversity Scientific Seminar on Information Technologies and Cognitive Telecommunications, Ed. by E. A. Subbotin (UrTISI SibGUTI, Yekaterinburg, 2016), pp. 10–12.Google Scholar
  25. 25.
    E. A. Volgarev, I. A. Malkova, and N. I. Il’inykh, “Thermodynamic modeling of electronic materials,” in Proceedings of the North Caucasian Branch of Moscow Technical University of Communications and Informatics (PTs Universitet SKF MTUSI, Rostov-on-Don, 2015), pp. 180–183.Google Scholar
  26. 26.
    I. A. Malkova and N. I. Il’inykh, “Investigation of temperature dependences of partial pressures of gas phase components over III–V melts, in Transactions of the North-Caucasian Branch of the Moscow Technical University of Communications and Informatics (PTs Universitet SKF MTUSI, Rostov-on-Don, 2016), pp. 160–163.Google Scholar
  27. 27.
    T. J. Anderson, Thermodynamics of Solid and Liquid Group III–V Alloys (Ph. D. Thesis, Lawrence Berkeley Laboratory, 1980).Google Scholar
  28. 28.
    A. Yazawa, T. Kawashima, and K. Itagaki, “Measurements of heats of mixing in liquid antimony binary alloys,” J. Japan Inst. Metals 32 (12), 1288–1293 (1968).Google Scholar
  29. 29.
    S. P. Yatsenko and V. N. Danilin, “On the relationship between the thermodynamic properties and the viscosity of liquid alloys,” in Thermophysical Properties of Liquids (Nauka, Moscow, 1970), pp. 120–124.Google Scholar
  30. 30.
    L. N. Gerasimenko, I. V. Kirichenko, L. N. Lozhkin, and A. G. Morachevskii, Protective Metal and Oxide Coatings. Metal Corrosion and Studies in the Field of Electrochemistry (Akad. Nauk SSSR, Otd. Obshch. Tekhn. Khim., Moscow, 1965).Google Scholar
  31. 31.
    B. Predel and D. W. Stein, “Beitrag zur kenntnis der thermodynamischen eigenschaften des systems gallium–antimon,” Less-Common Metals 24 (4), 391–403 (1971).Google Scholar
  32. 32.
    M. Paliwal, “Thermodynamic modeling of the Mg–Al–Bi and Mg–Al–Sb systems,” Calphad 34 (1), 51–63 (2010).Google Scholar
  33. 33.
    B. Predel and U. Schallner, “Thermodynamische untersuchung der systeme aluminium–antimon und aluminium-gold,” Materials Science and Engineering 5 (4), 210–219 (1970).Google Scholar
  34. 34.
    A. Zajaczkowski and J. Botor, “Thermodynamics of the Al–Sb system determined by vapour pressure measurements,” Z. Metallkd. 86 (9), 590–596 (1995).Google Scholar
  35. 35.
    C. A. Coughanowr, U. R. Kattner, and T. J. Anderson, “Assessment of the Al–Sb system,” Calphad 14 (2), 193–202 (1990).Google Scholar
  36. 36.
    K. Yamaguchi, M. Yoshizawa, Y. Takeda, K. Kameda, and K. Itagaki, “Measurement of thermodynamic properties of Al–Sb system by calorimeters,” Mater. Trans. JIM 36 (3), 432–437 (1995).Google Scholar
  37. 37.
    T. J. Terpilowski, E. Zaleska, and W. Gawel, “Characterystyka termodynamiczna ukladu stalego tal-tellur,” Roczniki Chemii 39, 1367–1375 (1965).Google Scholar
  38. 38.
    H. Hoshino, Y. Nakamura, M. Shimoji, and K. Niwa, “Thermodynamic properties of indium–antimony and indium–bismuth liquid alloys,” Berichte der Bunsengesellschaft fur Physikalische Chemie 69 (2), 114–118 (1965).Google Scholar
  39. 39.
    D. Chatterji and J. V. Smith, “The activity of In in liquid In–Sb alloys,” J. Electrochem. Soc. 120 (6), 770 (1973).Google Scholar
  40. 40.
    D. Chatterji and R. W Vest, “Thermodynamic properties of the system indium–oxygen,” J. American Ceramic Society 55 (11), 575–578 (1972).Google Scholar
  41. 41.
    A. A. Vecher, E. I. Voronova, L. A. Mechkovskii, and A. S. Skoropanov, “Determination of the enthalpy of mixing in the Ga–In–Sb and Bi–Sn–Sb systems by differential thermal analysis,” Russ. Phys. Chem. 48, 584 (1974).Google Scholar
  42. 42.
    C. Girard, J. M. Miane, J. Riou, R. Baret, and J. P. Bros, “Enthalpy of formation of Al–Sb and Al–Ga–Sb liquid alloys,” Less-Common Met. 128, 101–115 (1987).Google Scholar
  43. 43.
    T. Balakumar and M. Medraj, “Thermodynamic modeling of the Mg–Al–Sb system,” Calphad 29 (1), 24–36 (2005).Google Scholar
  44. 44.
    C. Klančnik and J. Medved, “Thermodynamic investigation of the Al–Sb–Zn system,” Mater. Techn. 45 (4), 317–323 (2011).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Ural Technical Institute of Communications and InformaticsYekaterinburgRussia

Personalised recommendations