Russian Metallurgy (Metally)

, Volume 2018, Issue 3, pp 282–286 | Cite as

Fundamentals and Prospects of the Development of Reduction Steelmaking

  • S. M. TleugabulovEmail author
  • S. B. Abikov
  • G. M. Koishina
  • M. K. Tatybaev


The laws of direct iron reduction by solid carbon are revealed. They open up fresh opportunities for the development of high-tech processes and the manufacture of high-purity and high-quality metal products at a substantial decrease in the gas yield and gas release to atmosphere. The existing (traditional and new) metallurgical technologies are based on the use of hot reducing gases (HRGs) according to the generally accepted scientific basis of an autocatalytic-adsorption mechanism. The use of the HRG potential at a level of 0.4–0.42 corresponds to HRG consumption of 2500–3000 m3/t per unit metal. The gas release to atmosphere is significant for such high HRG consumption, which complicates the worldwide ecological problem.


iron oxides reducing agent carbon gas steel 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Yu. S. Karabasov and V. M. Chizhikova, Physical Chemistry of Iron Reduction from Oxides (Metallurgiya, Moscow, 1986).Google Scholar
  2. 2.
    H. W. Gudenau, Vom Erz zum Stahl (RWTH, Aachen, 1989).Google Scholar
  3. 3.
    I. F. Kurunov, “Direct iron making and blast furnace–free metallurgy of cast iron in the XXI century,” Metallurg, No. 6, 27–29 (2010).Google Scholar
  4. 4.
    S. M. Tleugabulov, K. G. Nosov, S. D. Uryupin, and A. A. Shidlovskii, Control of Mixed Iron Reduction in the Shaft of a Blast Furnace (Gylym, Alma-Ata, 1991).Google Scholar
  5. 5.
    S. M. Tleugabulov, E. E. Kiekbaev, and G. M. Koishina, “Dissociation–adsorption mechanism as the theoretical basis of the high-tech of reduction smelting of steel,” J. Mater. Sci. Eng. 25, 281–288 (2012).Google Scholar
  6. 6.
    S. M. Tleugabulov, B. S. Tleugabulov, G. M. Koishina, and K. B. Pykhteeva-Tleugabulova, “Improvement of the control system of the reduction-melting process in a high blast furnace–type shaft furnace,” Stal’, No. 11, 14–20 (2011).Google Scholar
  7. 7.
    S. M. Tleugabulov, Theory of Metallurgical Processes: A Tutorial (RIK, Almaty, 2007).Google Scholar
  8. 8.
    S. M. Tleugabulov, “Dissociation–adsorption mechanism and the kinetics of the solid-phase iron reduction by carbon,” Stal’, No. 1, 15–18 (1991).Google Scholar
  9. 9.
    S. M. Tleugabulov, E. Kiekbaev, G. M. Koishina, and E. M. Aldangarov, “Direct metal reduction leads to a high-tech production,” Stal’, No. 2, 4–8 (2010).Google Scholar
  10. 10.
    O. A. Esin and P. V. Gel’d, Physical Chemistry of Pyrometallurgical Processes (Metallurgizdat, Moscow, 1962), Vol. I; (Metallurgiya, Moscow, 1966), Vol. II.Google Scholar
  11. 11.
    S. M. Tleugabulov, “High-tech melting-reduction steelmaking process,” Stal’, No. 4, 14–19 (2011).Google Scholar
  12. 12.
    D. Baggs and B. G. Kelley, “Method for reducing particulate iron oxide to metallic iron with solid reactant,” US Patent 769242, 1978.Google Scholar
  13. 13.
    Pei Zhao and Guo Peimen, “Technols of fast reduction of ultrafine iron ore at low temperature,” J. Untv. Sct. Technol. Beijing 15 (2), 104–109 (2008).CrossRefGoogle Scholar
  14. 14.
    S. M. Tleugabulov, “Method for reduction steelmaking and the related device,” Kazakhstan Patent 31495, 2016.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • S. M. Tleugabulov
    • 1
    Email author
  • S. B. Abikov
    • 1
  • G. M. Koishina
    • 1
  • M. K. Tatybaev
    • 1
  1. 1.Kazakh National Research Technical UniversityAlmatyRepublic of Kazakhstan

Personalised recommendations