Russian Metallurgy (Metally)

, Volume 2018, Issue 3, pp 276–281 | Cite as

Distribution of Alloying Elements over the Phase Constituents in Nb–Si in situ Composites

  • N. A. Kuz’minaEmail author
  • I. L. Svetlov
  • A. V. Neiman


The distribution of alloying elements over the phases in a eutectic Nb–Nb5Si3 composite material during directional solidification is studied. The influence of substitutional alloying elements on the type of structure in the reinforcing phase of silicide is analyzed. The crystal structures of the hexagonal and tetragonal modifications of the Nb5Si3 silicide are characterized and compared. The dependence of the creep resistance on the type of silicide structure is explained.


natural niobium–silicon composites diffusion creep resistance 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. N. Kablov, “Innovative solutions of FGUP VIAM GNTs RF for “Strategic Directions of Designing Materials and Technologies of Their Processing up to 2030,” Aviats. Mater. Tekhnol., No. 1 (34), 3–33 (2015). doi 10.18577/2071-9140-2015-0-1-3-33Google Scholar
  2. 2.
    E. N. Kablov, N. V. Petrushin, and E. S. Elyutin, “Single-crystal high-temperature alloys for gas turbine engines,” Vestn. MGTU, Ser. Mashinostroenie, No. SP2, 38–52 (2011).Google Scholar
  3. 3.
    E. N. Kablov, Yu. A. Bondarenko, and D. E. Kablov, “Peculiarities of the structure and high-temperature properties of <001> single crystals of high-rhenium nickel heat-resistance alloy prepared by high-gradient directional solidification,” Aviatsion. Mater. Tekhol., No. 4, 25–31 (2011).Google Scholar
  4. 4.
    E. N. Kablov, I. L. Svetlov, and I. Yu. Efimochkin, “High-temperature Nb–Si composites,” Vestn. MGTU, Ser. Mashinostroenie, No. SP2, 164–173 (2011).Google Scholar
  5. 5.
    O. B. Timofeeva, V. G. Kolodochkina, N. F. Shvanova, and A. V. Neiman, “Microstructure of a natural hightemperature composite material based on niobium reinforced by niobium silicide intermetallics,” Aviats. Mater. Tekhnol., No. 1 (34), 60–64 (2015). doi 10.18577/2071-9140-2015-0-1-60-64Google Scholar
  6. 6.
    B. V. Shchetanov, I. Yu. Efimochkin, S. V. Paegle, and F. N. Karachevtsev, “High-temperature strength of in situ Nb-based composites reinforced by single-crystal α-Al2O3 fibers,” Aviats. Mater. Tekhnol., No. 3, 53–59 (2016). doi 10.18577/2071-9140-2016-0-3-53-59Google Scholar
  7. 7.
    D. F. Bewlay, V. R. Jacson, and H. A. Lipsitt, “The balance of mechanical and environmental properties of a multielement niobium–niobium silicide-based in situ composite,” Met. Mater. Trans. A 27 (12), 3801–3808 (1996).CrossRefGoogle Scholar
  8. 8.
    Kim Jin-Hak, T. Tatsuo, H. Hisatoshi, K. Akira, and S. Hanada, “Mechanical properties of Nb–18Si–5Mo–5Hf–2C in situ composite prepared by arc-casting method,” Mater. Trans. 43 (9), 2201–2204 (2002).CrossRefGoogle Scholar
  9. 9.
    L. Jia and H. Zhang, “Heat treated microstructure and mechanical properties high content Nb–Si based alloy,” in Conf. Intermetallics (2013), p.68.Google Scholar
  10. 10.
    S. Zhang, X. Shi, and J. Sha, “Microstructural evolution and mechanical properties of cast and directionally solidified Nb–15.5Si–22Ti–2Al–2Hf–2V–(2–14)Cr alloys at room and high temperatures,” Intermetallics 56, 15–23 (2015).CrossRefGoogle Scholar
  11. 11.
    V. S. Urusov and N. N. Eremin, Atomistic Computer Simulation of the Structure and Properties of Inorganic Crystals and Minerals, Their Defects and Solid Solutions (GEOS, Moscow, 2012).Google Scholar
  12. 12.
    Yu. A. Kocherzhinskii, L. M. Yupko, and E. A. Shishkin, “The Nb–Si phase diagram,” Metally, No. 1, 206–211 (1980).Google Scholar
  13. 13.
    B. Aronsson, “The crystal structure of Mo5Si3 and W5Si3,” Acta Chem. Scand., No. 9, 1107–1110 (1955).CrossRefGoogle Scholar
  14. 14.
    H. Schachner, E. Cerwenka, and H. N. Nowotny, “Neue silizide vom M5Si3-typ mit D 88-struktur,” J. Amer. Ceram. Soc. 65, 260–265 (1982).CrossRefGoogle Scholar
  15. 15.
    I. L. Svetlov, “High-temperature Nb–Si composite materials,” Materialovedenie, No. 9, 29–38 (2010); No. 10, 18–27 (2010).Google Scholar
  16. 16.
    Ji-Cheng Zhao, B. P. Bewley, and L. A. Peluso, “Alloying and phase stability in Nb silicide in situ composite,” in Structural Intermetallics (2001), pp. 583–592.Google Scholar
  17. 17.
    G. V. Samsonov, L. A. Dvorina, and B. M. Rud’, Silicides (Metallurgiya, Moscow, 1979).Google Scholar
  18. 18.
    E. N. Kablov, N. A. Kuz’mina, N. N. Eremin, I. L. Svetlov, and A. V. Neiman, “Atomic structural models for the niobium silicides in in situ Nb–Si composites,” Zh. Strukt. Khim. 58 (3), 564–570 (2017).Google Scholar
  19. 19.
    Yue Chen, Qing Miao Hu, and Rui Yang, “Energetic effect of dopants on the eutectoid decomposition of Nb–Si in situ composites,” Phil. Mag. Lett. 91 (10), 640–647 (2011).CrossRefGoogle Scholar
  20. 20.
    N. A. Muromtsev, E. I. Marchenko, N. N. Eremin, and N. A. Kuz’mina, “Theoretical crystal chemistry analysis of the voids in in the crystal structures of the polymorphic Nb5Si3 modifications,” in Proceedings of the 8th All-Russia Conference on Minerals: Structure, Properties, Investigation Methods (Yekaterinburg, 2016), pp. 100–101.Google Scholar
  21. 21.
    B. P. Bewlay, C. L. Briant, M. R. Jackson, and P. R. Subramanian, “Recent advances in Nb-silicide in situ composites,” in Proceedings of 15th International Plansee Seminar (Reulte, 2001), Vol. 1, pp. 404–419.Google Scholar
  22. 22.
    B. P. Bewlay, C. L. Briant, E. T. Sylven, and M. R. Jackson, “The effects of substitutional additions on creep behavior of tetragonal and hexagonal Nb-silicides,” Mater. Res. Symp. Proc. 753, 321–326 (2003).Google Scholar
  23. 23.
    P. R. Subramanian et al., “Compressive creep behavior of Nb5Si3,” Scripta Met. Mater. 32 (8), 1227–1232 (1995).CrossRefGoogle Scholar
  24. 24.
    H. Merer, Diffusion in Solids (Intellekt, Moscow, 2011).Google Scholar
  25. 25.
    J. C. Slater, J. Chem. Phys. 41 (10), 3199–3204 (1964).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • N. A. Kuz’mina
    • 1
    Email author
  • I. L. Svetlov
    • 1
  • A. V. Neiman
    • 1
  1. 1.All-Russia Research Institute of Aviation Materials (VIAM)MoscowRussia

Personalised recommendations