Russian Metallurgy (Metally)

, Volume 2018, Issue 3, pp 221–227 | Cite as

Mechanism and Kinetics of the Thermal Oxidation of Natural Sphalerite

  • R. I. GulyaevaEmail author
  • E. N. Selivanov
  • S. M. Pikalov


The oxidation of natural sphalerite on heating in an oxidative medium is studied by thermogravimetry coupled with scanning calorimetry, mass spectrometry of released gases, and X-ray powder diffraction analysis. The mechanism of sphalerite oxidation when the particle surface is equally accessible and sulfur dioxide is removed from the reaction zone is the formation of ZnO, ZnFe2O4, and SO2. The process is found to be one-stage, as determined by a nonisothermal kinetic method. The activation energies are from 293 to 317 kJ/mol depending on the model used. Natural sphalerite is oxidized in the kinetic regime, and the rate-determining steps are the formation and growth of new-phase nuclei.


sphalerite thermal oxidation thermal analysis kinetics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. V. Vanyukov and V. Ya. Zaitsev, Theory of Pyrometallurgical Processes (Metallurgiya, Moscow, 1993).Google Scholar
  2. 2.
    G. S. Frents, Oxidation of Metal Sulfides (Nauka, Moscow, 1964).Google Scholar
  3. 3.
    F. Habashi, “Recent trends in extractive metallurgy,” J. Min. Met. B 45, 1–13 (2009).CrossRefGoogle Scholar
  4. 4.
    R. Dimitrov and I. Bonev, “Mechanism of zinc sulphide oxidation,” Thermochim. Acta 106, 9–25 (1986).CrossRefGoogle Scholar
  5. 5.
    T. T. Chen and J. E. Dutrizac, “Mineralogical changes occurring during the fluid-bed roasting of zinc sulfide concentrates,” JOM 12, 46–51 (2004).CrossRefGoogle Scholar
  6. 6.
    R. I. Dimitrov, N. Moldovanska, I. K. Bonev, and Ž. Živkovic, “Oxidation of marmatite,” Thermochim. Acta 362, 145–151 (2000).CrossRefGoogle Scholar
  7. 7.
    B. Boyanov, A. Peltekov, and V. Petkova, “Thermal behavior of zinc sulfide concentrates with different iron content at oxidative roasting,” Thermochim. Acta 586, 9–16 (2014).CrossRefGoogle Scholar
  8. 8.
    D. Schultze, U. Steinike, J. Kussin, and U. Kretzschmar, “Thermal oxidation of ZnS modifications sphalerite and wurtzite,” Cryst. Res. Technol. 30 (4), 553–558 (1995).CrossRefGoogle Scholar
  9. 9.
    J. W. Graydon and D. W. Kirk, “A microscopic study of the transformation of sphalerite particles during the roasting of zinc concentrate,” Met. Trans. B 19, 141–146 (1988).CrossRefGoogle Scholar
  10. 10.
    C. A. R. Queiroz, R. J. Carvalho, and P. J. Moura, “Oxidation of zinc sulphide concentrate in a fluidised bed reactor. Part 2. The influence of experimental variables of the kinetics,” Braz. J. Chem. Eng. 22, 127–133 (2005).CrossRefGoogle Scholar
  11. 11.
    J. C. Balarini, L. de Oliveira, T. L. S. Miranda, R. M. Zica de Castro, and A. Salum, “Importance of roasted sulphide concentrates characterization in the hydrometallurgical extraction of zinc,” Miner. Eng. 21, 100–110 (2008).CrossRefGoogle Scholar
  12. 12.
    M. A. Lyamina, “Kinetics of zinc sulfide oxidation during melting in an oxygen-suspended cyclone-electrothermal (KIVTsET) aggregate,” Tsvetn. Met., No. 2, 59–62 (2004).Google Scholar
  13. 13.
    B.-S. Kim, S.-B. Jeong, Y. Kim, and H.-S. Kim, “Oxidative roasting of low grade zinc sulfide concentrate from Gagok mine in Korea,” Mater. Trans. 51 (8), 1481–1485 (2010).CrossRefGoogle Scholar
  14. 14.
    S. N. Shin, V. A. Kirakosyan, and S. I. Korkiya, “On the kinetic parameters of the oxidation of zinc and cadmium sulfides,” Tsvetn. Met., No. 1, 32–35 (1981).Google Scholar
  15. 15.
    R. I. Gulyaeva, E. N. Selivanov, and S. M. Pikalov, “The mechanisms and kinetics of Zn1–xFexS sulphides and sphalerite oxidation,” in Proceedings of International Conference on Thermal Analysis and Calorimetry in Russia (RTAC-2016) (2016), Vol. 1, pp. 416–420.Google Scholar
  16. 16.
    J. Opffermann, NETZSCH Thermokinetics 3.0. Version 2006.08. Scholar
  17. 17.
    R. I. Gulyaeva, E. N. Selivanov, and A. N. Mansurova, “Chemism and kinetics of the oxidation of zinc–calcium oxysulfide,” Russ. Metall. (Metally), No. 5, 327–331 (2013).CrossRefGoogle Scholar
  18. 18.
    “Powder diffraction file-2 (PDF2+),” in International Centre for Diffraction Data (ICDD) (2012).Google Scholar
  19. 19.
    D. A. Chareev, V. O. Osadchii, A. A. Shiryaev, A. N. Nekrasov, A. V. Koshelev, and E. G. Osadchii, “Single-crystal Fe-bearing sphalerite: synthesis, lattice parameter, thermal expansion coefficient, and microhardness,” Phys. Chem. Miner. (2016). doi 10.1007/s00269-016-0856-zGoogle Scholar
  20. 20.
    A. M. Abdel-Rehim, “Thermal and XRD analysis of Egyptian galena,” J. Therm. Anal. Cal. 86 (2), 393–401 (2006).CrossRefGoogle Scholar
  21. 21.
    H. Iwanaga, A. Kunishige, and S. J. Takeuchi, “Anisotropic thermal expansion in wurtzite-type crystals,” J. Mater. Sci. 35, 2451–2454 (2000).CrossRefGoogle Scholar
  22. 22.
    S. K. Filatov, High-Temperature Crystal Chemistry. Theory, Methods, and Results of Investigation (Nedra, Leningrad, 1990).Google Scholar
  23. 23.
    T. Yamashita, R. Hansson, and P. C. Hayes, “The relationships between microstructure and crystal structure in zincite solid solutions,” J. Mater. Sci. 41, 5559–5568 (2006).CrossRefGoogle Scholar
  24. 24.
    V. Špelàk, K. Tkàcovà, V. V. Boldyrev, and U. Steinike, “Crystal structure refinement of the mechanically activated spinel–ferrite,” Mater. Sci. Forum 228–231, 783–788 (1996).Google Scholar
  25. 25.
    S. Vyazovkin, A. K. Burnham, J. M. Criado, L. A. Pèrez-Maqueda, C. Popescu, and N. Sbirrazzuoli, “ICTAC kinetics committee recommendations for performing kinetic computations on thermal analysis data,” Thermochim. Acta 520, 1–19 (2011).CrossRefGoogle Scholar
  26. 26.
    ASTM E1641-07. Standard Test Method for Decomposition Kinetics by Thermogravimetry. Annual Book of ASTM Standards (ASTM International, West Conshohocken, PA, 2007), Vol. 14.02.Google Scholar
  27. 27.
    Ž. Živković, D. Živković, D. Grujičić, and V. Savović, “Kinetics of the oxidation process in the system Zn–Fe–S–O,” Thermochim. Acta 315, 33–37 (1998).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • R. I. Gulyaeva
    • 1
    Email author
  • E. N. Selivanov
    • 1
  • S. M. Pikalov
    • 1
  1. 1.Institute of Metallurgy, Ural BranchRussian Academy of SciencesYekaterinburgRussia

Personalised recommendations