Advertisement

Russian Metallurgy (Metally)

, Volume 2018, Issue 3, pp 252–258 | Cite as

Thermal Conductivity of Low-Alloy Copper for Molds

  • G. A. Dubskii
  • K. N. Vdovin
  • A. A. Nefed’ev
  • L. G. Egorova
Article
  • 2 Downloads

Abstract

A setup is created to determine the main thermotechnical characteristics of copper alloys. At temperatures below 400°C, Cu–Fe alloys are found to have the thermal conductivity and the thermal diffusivity that are lower than those of pure copper by a factor of 1.5–2.0. As the temperature increases, these parameters become close to those of pure copper. The wall of a mold made of a copper alloy with 0.17–0.23 wt % iron has a satisfactory thermal conductivity upon heating to 250–300°C.

Keywords

thermal conductivity copper alloy thermal diffusivity mold 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. N. Vdovin, V. V. Tochilkin, and I. M. Yachikov, Continuous Casting of Steel (Izd. MagnGTU, Magnitogorsk, 2012).Google Scholar
  2. 2.
    N. P. Lyakishev and A. G. Shalimov, Development of Continuous Casting of Steel (ELIZ, Moscow, 2002).Google Scholar
  3. 3.
    M. M. Klyuev and S. E. Volkov, Electroslag Remelting (Metallurgiya, Moscow, 1984).Google Scholar
  4. 4.
    Copper. Brass. Bronze: Tutorial for Institutes of Higher Education, Ed. by Yu. N. Raikov (Inst. Tsvetmetobrabotka, Moscow, 2006).Google Scholar
  5. 5.
    A. K. Nikolaev, “On the discussion about the materials intended for continuous casting molds,” Metallosnabzhenie Sbyt, No. 7/8, 108–115 (2004).Google Scholar
  6. 6.
    A. K. Nikolaev and S. A. Kostin, Copper and High-Temperature Alloys (Press, Moscow, 2012).Google Scholar
  7. 7.
    K. N. Vdovin, A. A. Nefed’ev, G. A. Dubskii, et al., “Recrystallization temperature of a microalloyed Cu–Fe alloy as a function of the iron concentration,” in Proceedings of XVI International Conference on Modern Engineering and Technologies (Tomsk Politekhn. Univ., Tomsk, 2010), Vol. 2, pp. 199–201.Google Scholar
  8. 8.
    A. G. Korotkikh, Thermal Conductivity of Materials (Izd. TPI, Tomsk, 2011).Google Scholar
  9. 9.
    V. A. Osipova, Experimental Investigation of Heat Exchange Processes (Energiya, Moscow, 1979).Google Scholar
  10. 10.
    G. Ruffino, “Modern methods of temperature measurement in the stage of thermophysical properties at high temperatures,” High Temp.–High Press. 11 (2), 209–220 (1979).Google Scholar
  11. 11.
    Yu. I. Azima, “Use of the integro-interpolation method for construction of difference equations for determination of thermal properties and unsteady-state heat fluxes,” J. Eng. Phys. Thermophys. 71 (5), 795–802 (1998).CrossRefGoogle Scholar
  12. 12.
    A. Cezairlean, “High-speed methods of measuring thermophysical properties at high temperatures,” Rev. Inter. Hautes Temp. Refract. 7, 215–229 (1970).Google Scholar
  13. 13.
    K. N. Vdovin, G. A. Dubskii, A. A. Nefed’ev, et al., “Experimental setup for measuring the thermophysical properties of solids using periodic heat waves,” Vestn. Magnitogorsk. Gos. Tekhn. Univ., No. 4, 81–88 (2007).Google Scholar
  14. 14.
    A. V. Lykov and Yu. A. Mikhailov, Theory of Energy and Substance Transfer (Izd. BSSR, Minsk, 1959).Google Scholar
  15. 15.
    J. Ziman, Electrons and Phonons (Clarendon, Oxford, 1960).Google Scholar
  16. 16.
    J. Reissland, The Physics of Phonons (Benjamin/Cummings, London, 1973).Google Scholar
  17. 17.
    W. Harrison, Solid State Theory (McGraw-Hill, NewYork, 1970).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • G. A. Dubskii
    • 1
  • K. N. Vdovin
    • 1
  • A. A. Nefed’ev
    • 1
  • L. G. Egorova
    • 1
  1. 1.Magnitogorsk State Technical UniversityMagnitogorskRussia

Personalised recommendations