Russian Metallurgy (Metally)

, Volume 2015, Issue 9, pp 759–770 | Cite as

Texture, microstructure, and fractal features of the low-cycle fatigue failure of the metal in pipeline welded joints

  • V. V. UsovEmail author
  • E. E. Gopkalo
  • N. M. Shkatulyak
  • A. P. Gopkalo
  • T. S. Cherneva


Crystallographic texture and fracture features are studied after low-cycle fatigue tests of laboratory specimens cut from the base metal and the characteristic zones of a welded joint in a pipeline after its longterm operation. The fractal dimensions of fracture surfaces are determined. The fractal dimension is shown to increase during the transition from ductile to quasi-brittle fracture, and a relation between the fractal dimension of a fracture surface and the fatigue life of the specimen is found.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Van Khaizhun and V. M. Markochev, “Strength of a pipeline with a three-dimensional wall defect,” Nauchn. Trudy MIFI 8, 199–200 (2003).Google Scholar
  2. 2.
    A. N. Kozik and V. V. Vorob’ev, “Influence of corrosion damages on the carrying ability of oil pipes,” Mekhanika Mashin, Mekhanizmov Materialov, No. 2(15), 90–94 (2011).Google Scholar
  3. 3.
    V. V. Usov, N. M. Shkatulyak, V. S. Girenko, M. D. Rabkina, et al., “Effect of the crystallographic texture on the tendency to the layer–brittle fracture of low-alloyed low-pearlitic steels,” Izv. AN SSSR, Ser. Met., No. 1, 120–125 (1990).Google Scholar
  4. 4.
    V. V. Usov, N. M. Shkatulyak, V. S. Girenko, M. D. Rabkina, et al., “Effect of the crystallographic texture on the anisotropy of the fracture characteristics of low-alloyed steel of controlled rolling,” Fiz. Khim. Mekh. Mater. 29 (2), 47–52 (1993).Google Scholar
  5. 5.
    N. P. Lyakishev, I. V. Egiz, and V. M. Shamrai, “Texture and crystallographic features of fracture of the tube material of Kh70 steel,” Izv. Ross. Akad. Nauk, Ser. Met., No. 2, 68–72 (2000).Google Scholar
  6. 6.
    V. S. Ivvanova, A. S. Balankin, I. Zh. Bunin, and A. A. Oksagoev, Synergetics and Fractals in Materials Science (Nauka, Moscow, 1994).Google Scholar
  7. 7.
    V. V. Usov and N. M. Shkatulyak, “Fractal nature of the brittle fracture surfaces of metal,” Mater. Sci. 41 (1), 62–66 (2005).CrossRefGoogle Scholar
  8. 8.
    B. Kiinkenberg, “Review of methods used to determine the fractal dimension of linear features,” Mathematical Geology 26 (1), 23–46 (1994).CrossRefGoogle Scholar
  9. 9.
    B. Mandelbrot, Fractal Geometry of Nature (Institut Komp’yut. Issledov., Moscow, 2002).Google Scholar
  10. 10.
    A. M. Arsenkin, “Estimation of the heterogeneity of the ductility of structural steels from measuring the structure of fracture surfaces by means of various dimensions,” Extended Abstract of Cand. Sci. (Eng.) Dissertation, Moscow Institute of Steel and Alloys, Moscow, 2009. Scholar
  11. 11.
    H. W. Zhou and H. Xie, “Direct estimation of the fractal dimensions of a fracture surface of rock,” Surface Rev. Lett. 10 (5), 751–762 (2003). Scholar
  12. 12.
    M. A. Lucas, “Foundations of measurement fractal. Theory for the fracture mechanics,” in Appl. Fracture Mechanics, Ed. by A. Belov.
  13. 13.
    V. Y. Milman, N. A. Stelmashenko, and R. Blumenfeld, “Fracture surfaces: a critical review of fractal studies and a novel morphological analysis of scanning tunneling microscopy measurements,” Progr. Mater. Sci. 38, 425–474 (1994). pdfCrossRefGoogle Scholar
  14. 14.
    P. V. Kuznetsov, I. V. Petrakova, and Yu. Shraiber, “Fractal dimension as a characteristic of the fatigue of metal polycrystals,” Fiz. Mezomekh. 7 (1), 389–392 (2004). Scholar
  15. 15.
    G. G. Savenkov and B. K. Barakhtin, “Relation between the fractal dimension of a fracture surface and the standard tensile characteristics of a material,” Prikl. Mekh. Tekhnich. Fiz. 52 (6), 177–184 (2011).Google Scholar
  16. 16.
    L. R. Carney and J. J. Mecholsky, “Relationship between fracture toughness and fracture surface fractal dimension in AISI 4340 steel,” Mater. Sci. Applicat. 4 (4), 258–267 (2013). Scholar
  17. 17.
    A. V. Kudrya, E. A. Sokolovskaya, and A. M. Arsenkin, “Efficiency of application of the means of observation of various dimensions to analyze the morphology of heat-treatable steels,” Def. Razr. Mater., No. 1, 38–44 (2010). Scholar
  18. 18.
    K. Wiencek, A. Czarski, and T. Skowronek, “Fractal characterization of fractured surfaces of a steel containing dispersed Fe3C carbide phase,” Mater. Characterization 46 (2–3), 235–238 (2001). doi: Scholar
  19. 19.
    E. Bouchaud, G. Lapasset, and J. Planes, “Fractal dimension of fractured surfaces: a universal value?” Europh. Lett. 13 (1), 73–79 (1990).CrossRefGoogle Scholar
  20. 20.
    E. Bouchaud, G. Lapasset, and J. Planes, “Statistics of branched fracture surfaces,” Phys. Rev. B 48 (5), 2917–2928. doi: 10.1103/PhysRevB.48.2917Google Scholar
  21. 21.
    E. Bouchaud, “Scaling properties of cracks,” J. Phys.: Condens. Matter. 9 (21), 4319–4344. doi:
  22. 22.
    O. P. Gopkalo, P. Yukhimets, O. Bernats’kii, O. E. Gopkalo, O. Katok, and R. Dmitrienko, “Experimental estimation of the mechanical properties of pipeline steel 17G1S-U after long-term operation,” Vestn. Ternop. Nats. Tekhn. Univ., No. 2(66), 40–52 (2012).Google Scholar
  23. 23.
    M. M. Borodkina and E. N. Spector, X-ray Diffraction Analysis of Texture in Metals and Alloys (Metallurgiya, Moscow, 1982).Google Scholar
  24. 24.
    Ya. D. Vishnyakov, A. A. Babareko, S. A. Vladimirov, and I. V. Egiz, Theory of Formation of Textures in Metals and Alloys (Nauka, Moscow, 1979).Google Scholar
  25. 25.
    A. Bunde and S. Havlin, Fractals and Disordered Systems (Springer, Heidelberg, 1991).CrossRefGoogle Scholar
  26. 26.
    E. E. Zasimchuk, Yu. G. Gordienko, and R. G. Gontareva, “Self-similar structures in molybdenum single crystals deformed by rolling,” Metallofiz. Noveish. Tekhnol. 22 (4), 71–84 (2000).Google Scholar
  27. 27.
    L. Kestens and S. Jacobs, “Texture control during the manufacturing of nonoriented electrical steels,” Texture, Stress, and Microstructur., Article ID 173083 (2008). doi: Scholar
  28. 28.
    Z. A. Bryukhanova, V. V. Usov, and N. M. Shaktulyak, “Effect of hot rolling on the heterogeneity of crystallographic texture over the cross section of TRIP steel sheets and the anisotropy of their elastic properties,” Izv. Vyssh. Uchebn. Zaved., Chern. Metall., No. 2, 43–45 (1992).Google Scholar
  29. 29.
    A. A. Bryukhanov, V. V. Usov, and N. M. Shaktulyak, “Effect of controlled rolling on the heterogeneity of crystallographic texture over the cross section of rolled low-carbon steel plates,” Izv. Vyssh. Uchebn. Zaved., Chern. Metall., No. 12, 73–76 (1989).Google Scholar
  30. 30.
    Ch. S. Barret and T. B. Masal’skii, Structure of Metals (Metallurgiya, Moscow, 1984).Google Scholar
  31. 31.
    M. Hölscher, D. Raabe, and K. Lülcke, “Rolling and recrystallization textures of bcc steels,” Steel Research 62 (12), 567–575 (1991).CrossRefGoogle Scholar
  32. 32.
    R. E. Williford, “Scaling similarities between fracture surfaces, energies, and a structure parameter,” Scripta Metallurgica 22 (2), 1749–1754 (1988). doi: Scholar
  33. 33.
    A. I. Olemskii and A. Ya. Flat, “Use of the fractal concept in the physics of condensed matter,” Usp. Fiz. Nauk 163 (12), 1–50 (1993). Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • V. V. Usov
    • 1
    Email author
  • E. E. Gopkalo
    • 2
  • N. M. Shkatulyak
    • 1
  • A. P. Gopkalo
    • 2
  • T. S. Cherneva
    • 1
  1. 1.Ushinskii South Ukrainian National Pedagogical UniversityOdessaUkraine
  2. 2.Pisarenko Institute for Problems of StrengthNational Academy of Sciences of UkraineKiyvUkraine

Personalised recommendations