Advertisement

Effect of Solvent Polarity on Bromobutyl Rubber Isomerization

  • 7 Accesses

Abstract

The reaction pathway of the isomerization in the process of butyl rubber bromination was proposed based on density functional theory (DFT) and MP2 calculations with the 6-31+G(d) basis set. The microstructural composition of the brominated butyl rubber was determined via proton nuclear magnetic resonance spectroscopy (1H-NMR).The transition state of isomerization reaction was identified. The geometries of the reactant, transition state, and product structures were optimized. The effect of solvation on model compounds was simulated using the polarizable continuum model (PCM). The energy barriers for isomerization reactions were calculated with different solvents (vacuum, n-hexane, and 245/105 mL n-hexane/dichloromethane (DCM) mixture). The increase in solvent polarity decreased the activation energy and facilitated the isomerization reaction. This finding was consistent with the experimental result.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. 1

    P. Xie, K. Wang, and G. S. Luo, Ind. Eng. Chem. Res. 57, 3898 (2018).

  2. 2

    I. J. Gardner, US Patent No. 4288575 (1981).

  3. 3

    I. J. Gardner and J. V. Fusco, US Patent No. 4649178 (1987).

  4. 4

    R. C. Kowalski, W. M. Davis, N. F. Newman, Z. A. Foroulis, and F. P. Baldwin, Patent EP0197104 (1986).

  5. 5

    G. Kaszas and R. Resendes, CN Patent No. 101100491A (2008).

  6. 6

    D. M. Cheng, I. J. Gardner, H. C. Wang, C. B. Frederick, A. H. Dekmezian, and P. Hous, Rubber Chem. Technol. 63, 265 (1990).

  7. 7

    Y. Wu, W. Guo, S. Li, L. Gong, and Y. Shang, Polym. Korean. 34, 69 (2010).

  8. 8

    R. Vukov, Rubber Chem. Technol. 57, 275 (1984).

  9. 9

    J. S. Parent, D. J. Thom, G. White, R. A. Whitney, and W. Hopkins, J. Polym. Sci., Part A 39, 2019 (2001).

  10. 10

    W. Wei, Z. Haikui, C. Guangwen, X. Yang, P. Han, and C. Jianfeng, Chin. J. Chem. Eng. 22, 398 (2014).

  11. 11

    C. Y. Lin and J. J. Ho, J. Phys. Chem. A 106, 4137 (2002).

  12. 12

    M. Boronat, P. Viruela, and A. Corma, J. Phys. Chem. A 102, 982 (1998).

  13. 13

    M. L. Xin, J. W. Yang, and Y. Li, Chem. Centr. J. 11, 61 (2017).

  14. 14

    Q. X. Ji and J. Z. Li, Polym. Mater Sci. Eng. 9 (1994).

  15. 15

    T. Y. Guo, G. J. Hao, et al. J. Appl. Polym. Sci. 86, 3078 (2002).

  16. 16

    M. Head-Gordon, J. A. Pople, and M. J. Frisch, Chem. Phys. Lett. 153, 503 (1988).

  17. 17

    M. Head-Gordon and Т. Head-Gordon, Chem. Phys. Lett. 220, 122 (1994).

  18. 18

    S. Sæbø and J. Almlöf, Chem. Phys. Lett. 154, 83 (1989).

  19. 19

    M. J. Frisch, M. Head-Gordon, and J. A. Pople, Chem. Phys. Lett. 166, 275 (1990).

  20. 20

    M. J. Frisch, M. Head-Gordon, and J. A. Pople, Chem. Phys. Lett. 166, 281 (1990).

  21. 21

    A. D. Becke, J. Chem. Phys. 98, 5648 (1993).

  22. 22

    P. J. Stephens, F. J. Devlin, C. F. Chabalowski, and M. J. Frisch, J. Phys. Chem. 98, 247 (1994).

  23. 23

    A. D. Becke, Phys. Rev. A 38, 3098 (1988).

  24. 24

    J. P. Perdew, Phys. Rev. B 33, 8822 (1986).

  25. 25

    T. Clark, J. Comp. Chem. 4, 294 (1983).

  26. 26

    W. J. Hehre, R. Ditchfield, and J. A. Pople, J. Chem. Phys. 56, 2257 (1972).

  27. 27

    W. J. Hehre and W. A. Lathan, J. Chem. Phys. 56, 5255 (1972).

  28. 28

    K. Fukui, Acc. Chem. Res. 14, 471 (1981).

  29. 29

    E. D. Glendening, C. R. Landis, and F. Weinhold, Wires Comput. Mol. Sci. 2, 1 (2012).

  30. 30

    S. Miertus and J. Tomasi, Chem. Phys. 65, 239 (1982).

  31. 31

    I. Mayer, Int. J. Quantum Chem. 29, 73 (1986).

  32. 32

    H. Dureckova, T. K. Woo, S. Alavi, and J. A. Ripmeester, (2015).

  33. 33

    P. Polizer, J. Comput. Chem. 2, 273 (1991).

  34. 34

    A. S. Beni and M. Zarandi, Russ. J. Phys. Chem. A 90, 374 (2016).

  35. 35

    O. Rubio-Pons, L. Serrano-Andrés, D. Burget, and P. Jacques, J. Photochem. Photobiol. A 179, 298 (2006).

  36. 36

    A. Noori Tahneh and E. Balali, J. Mol. Model. 23, 356 (2017).

  37. 37

    B. Mennucci, J. Tomasi, R. Cammi, J. R. Cheeseman, M. J. Frisch, F. J. Devlin, et al., J. Phys. Chem. A 106, 6102 (2002).

  38. 38

    W. Benchouk, S. M. Mekelleche, B. Silvi, M. J. Aurell, and L. R. Domingo, J. Phys. Org. Chem. 24, 611 (2011).

  39. 39

    Xin Liu, Li. Yaping, and F. Zhang, J. Mol. Catal. A 396, 181 (2015).

Download references

ACKNOWLEDGMENTS

This work was supported by the National Science Foundation of China (no. 51573020), Beijing Natural Science Foundation (no. 2172022), Scientific Research Project of Beijing Educational Committee (KM201810017008), Project of Petrochina (no. KYWX-18-002) and URT Program (no. 2016J00036) and Dawn TC4000 High-Performance Computation Platform in Beijing Institute of Petro-Chemical Technology.

Author information

Correspondence to Shu Xin Li.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Junwei Zhou, Chen, Z., Zeng, F. et al. Effect of Solvent Polarity on Bromobutyl Rubber Isomerization. Russ. J. Phys. Chem. 93, 2687–2693 (2019). https://doi.org/10.1134/S0036024419130405

Download citation

Keywords:

  • brominated butyl rubber
  • isomerization
  • density functional theory
  • MP2
  • transition state
  • solvent effect