Advertisement

Russian Journal of Physical Chemistry A

, Volume 93, Issue 13, pp 2824–2833 | Cite as

Synthesis, Photoluminescence Properties, and Photocatalytic Activity of a Novel Y2O3/Co3O4 Nano-Composite Catalyst in the Degradation of Methyl Red Dye

  • Jianyuan Zhang
  • Kehua ZouEmail author
  • Weihua Yang
  • You Wang
PHOTOCHEMISTRY AND MAGNETOCHEMISTRY
  • 2 Downloads

Abstract

The Y2O3, Co3O4, and Y2O3/Co3O4 composites were synthesized by a microwave assisted polyacrylamide gel method and characterized by X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), UV–Vis spectrophotometry, fluorescence spectrophotometry and electrochemical methods. XRD and FTIR results indicate that the Y2O3, Co3O4, and Y2O3/Co3O4 composites exhibits high crystallinity and no other diffraction peaks of impurities. SEM images show that the nanoscale metal oxides can be obtained by the microwave assisted polyacrylamide gel method. Optical properties show that the Co3O4 doping of Y2O3 causes large Eg change in Y2O3. Photoluminescence analysis reveals that the Y2O3 and Y2O3/Co3O4 composites possess obvious blue emission due to the surface defect present in the as-prepared samples. The effect of the catalyst content, dye concentration, pH value, and reaction temperature on the photocatalytic activity of the Y2O3/Co3O4 composites was systematically studied. Based on electrochemical test and photocatalytic experiment, the Y2O3/Co3O4 composites were confirmed to exhibit high photocatalytic activity in degradation of methyl red (MR) as a model dye. The photocatalysis mechanism of the Y2O3/Co3O4 composites is discussed on the basis of pn junction theory.

Keywords:

polyacrylamide gel method blue emission surface defect photocatalytic activity, p–n junction 

Notes

ACKNOWLEDGMENTS

This work was financially supported by Tianjin Applied Basic Research Program (06YFJMJC066000).

REFERENCES

  1. 1.
    Y. Chen, L. Hu, M. Wang, Y. Min, and Y. Zhang, Colloids Surf. A 336, 64 (2009).CrossRefGoogle Scholar
  2. 2.
    H. Li, G. T. Fei, M. Fang, P. Cui, X. Guo, P. Yan, and L. de Zhang, Appl. Surf. Sci. 257, 6527 (2011).CrossRefGoogle Scholar
  3. 3.
    X. Lou, J. Han, W. Chu, X. Wang, and Q. Cheng, Mater. Sci. Eng. B 137, 268 (2007).CrossRefGoogle Scholar
  4. 4.
    Y. Tang, M. Zhang, Z. Wu, Z. Chen, C. Liu, Y. Lin, and F. Chen, Mater. Res. Express 5, 045045 (2018).CrossRefGoogle Scholar
  5. 5.
    D. S. Lee, H. J. Chen, and Y. W. Chen, J. Phys. Chem. Solids 73, 661 (2012).CrossRefGoogle Scholar
  6. 6.
    J. Rosen, G. S. Hutchings, and F. Jiao, J. Catal. 310, 2 (2014).CrossRefGoogle Scholar
  7. 7.
    G. Chen, X. Si, J. Yu, H. Bai, and X. Zhang, Appl. Surf. Sci. 330, 191 (2015).CrossRefGoogle Scholar
  8. 8.
    G. M. Reda, H. Fan, and H. Tian, Adv. Powder Technol. 28, 953 (2017).CrossRefGoogle Scholar
  9. 9.
    M. Long, W. Cai, and H. Kisch, J. Phys. Chem. C 112, 548 (2008).CrossRefGoogle Scholar
  10. 10.
    O. Yehezkeli, D. R. de Oliveira, and J. N. Cha, Small 11, 668 (2015).CrossRefGoogle Scholar
  11. 11.
    I. L. Santana, T. F. M. Moreira, M. F. F. Lelis, and M. B. J. G. Freitas, Mater. Chem. Phys. 190, 38 (2017).CrossRefGoogle Scholar
  12. 12.
    M. Mousavi and A. Habibi-Yangjeh, Adv. Powder Technol. 28, 1540 (2017).CrossRefGoogle Scholar
  13. 13.
    J. P. Kumar, G. Ramgopal, Y. S. Vidya, K. S. Anantharaju, B. D. Prasad, S. C. Sharma, S. C. Prashantha, H. P. Nagaswarupa, D. Kavyashree, and H. Nagabhushana, Spectrochim. Acta A 149, 687 (2015).CrossRefGoogle Scholar
  14. 14.
    G. Ramgopal, Y. S. Vidya, K. S. Anantharaju, B. D. Prasad, S. C. Sharma, S. C. Prashantha, S. C. Prashantha, H. B. Premkumar, H. Nagabhushanai, and H. Nagabhushana, Spectrochim. Acta A 141, 149 (2015).CrossRefGoogle Scholar
  15. 15.
    C. Karunakaran, R. Dhanalakshmi, and P. Anilkumar, J. Hazard. Mater. 167, 664 (2009).CrossRefGoogle Scholar
  16. 16.
    C. M. Magdalane, K. Kaviyarasu, J. J. Vijaya, B. Siddhardha, B. Jeyaraj, J. Kennedy, and M. Maaza, J. Alloys Compd. 727, 1324 (2017).CrossRefGoogle Scholar
  17. 17.
    L. N. Obolenskaya, N. A. Dulina, E. V. Savinkina, and G. M. Kuz’micheva, Inorg. Mater. 49, 572 (2013).CrossRefGoogle Scholar
  18. 18.
    F. Hu, S. Zhao, and X. Yin, J. Mater. Sci. Mater. Electron. 29, 16747 (2018).CrossRefGoogle Scholar
  19. 19.
    M. Sun, X. Han, and S. Chen, Mater. Sci. Semicon. Proc. 91, 367 (2019).CrossRefGoogle Scholar
  20. 20.
    S. H. Li, G. P. Lei, and H. Peng, Ferroelectrics 520, 135 (2017).CrossRefGoogle Scholar
  21. 21.
    R. H. Krishna, B. M. Nagabhushana, H. Nagabhushana, R. P. S. Chakradhar, R. Sivaramakrishna, C. Shivakumara, and T. Thomas, J. Alloys Compd. 585, 129 (2014).CrossRefGoogle Scholar
  22. 22.
    Z. H. Xiao, A. X. Lu, and C. G. Zuo, Adv. Appl. Ceram. 108, 325 (2009).CrossRefGoogle Scholar
  23. 23.
    S. B. Khan, K. S. Karimov, M. T. S. Chani, A. M. Asiri, K. Akhtar, and N. Fatima, Microchim. Acta 182, 2019 (2015).CrossRefGoogle Scholar
  24. 24.
    M. L. Pang, J. Lin, Z. Y. Cheng, J. Fu, R. B. Xing, and S. B. Wang, Mater. Sci. Eng. B 100, 124 (2003).CrossRefGoogle Scholar
  25. 25.
    F. Wang, H. Yang, and Y. Zhang, Mater. Sci. Semicond. Process. 73, 58 (2018).CrossRefGoogle Scholar
  26. 26.
    T. N. Ravishankar, T. Ramakrishnappa, G. Nagaraju, and H. Rajanaika, Chem. Open 4, 146 (2015).Google Scholar
  27. 27.
    S. Kansal, M. Singh, and D. Sud, J. Hazard. Mater. 141, 581 (2007).CrossRefGoogle Scholar
  28. 28.
    N. Daneshvar, D. Salari, and A. Khataee, J. Photochem. Photobiol. Chem. 162, 317 (2004).CrossRefGoogle Scholar
  29. 29.
    A. W. Xu, Y. Gao, and H. Q. Liu, J. Catal. 207, 151 (2002).CrossRefGoogle Scholar
  30. 30.
    R. Velmurugan, B. Sreedhar, and M. Swaminathan, Chem. Cent. J. 5, 46 (2011).CrossRefGoogle Scholar
  31. 31.
    J. Zheng, H. Yu, X. Li, and S. Zhang, Appl. Surf. Sci. 254, 1630 (2008).CrossRefGoogle Scholar
  32. 32.
    M. Aslam, M. T. Qamar, M. T. Soomro, I. M. Ismail, N. Salah, T. Almeelbi, and A. Hameed, Appl. Catal. B: Environ. 180, 391 (2016).CrossRefGoogle Scholar
  33. 33.
    Y. Gao, S. Chen, D. Cao, G. Wang, and J. Yin, J. Power Sources 195, 1757 (2010).CrossRefGoogle Scholar
  34. 34.
    T. Arai, M. Yanagida, Y. Konishi, Y. Iwasaki, H. Sugihara, and K. Sayama, J. Phys. Chem. C 111, 7574 (2007).CrossRefGoogle Scholar
  35. 35.
    T. Tachikawa, M. Fujitsuka, and T. Majima, J. Phys. Chem. C 111, 5259 (2007).CrossRefGoogle Scholar
  36. 36.
    Y. Xia, Z. He, J. Su, Y. Liu, and B. Tang, Nanoscale Res. Lett. 13, 148 (2018).CrossRefGoogle Scholar
  37. 37.
    Y. Xia, Z. He, J. Su, B. Tang, K. Hu, Y. Lu, and X. Li, RSC Adv. 8, 4284 (2018).Google Scholar
  38. 38.
    Y. Xia, Z. He, K. Hu, B. Tang, J. Su, Y. Liu, and X. Li, J. Alloys Compd. 753, 356 (2018).CrossRefGoogle Scholar
  39. 39.
    Y. Xia, Z. He, Y. Lu, B. Tang, S. Sun, J. Su, and X. Li, RSC Adv. 8, 5441 (2018).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • Jianyuan Zhang
    • 1
  • Kehua Zou
    • 2
    Email author
  • Weihua Yang
    • 2
  • You Wang
    • 1
  1. 1.School of Environmental and Chemical Engineering, Tianjin Polytechnic UniversityTianjinChina
  2. 2.Tianjin Academy of Environmental SciencesTianjinP.R. China

Personalised recommendations