Advertisement

Russian Journal of Physical Chemistry A

, Volume 93, Issue 13, pp 2789–2797 | Cite as

Synthesis of Fe3O4 Nanoparticles and Their Application in Photo-Fenton Degradation of Direct Red 23 Dye in Aqueous Solutions

  • Reza MoradiEmail author
  • Amin Ganjali
PHYSICAL CHEMISTRY OF NANOCLUSTERS AND NANOMATERIALS

Abstract

In this paper, synthesized Fe3O4 nanoparticles applied as catalyst in photodegradation of Direct Red 23 (DR23) dye using photo-Fenton process in aqueous solution. The Fe3O4 nanoparticles were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR). Design of experiments (DOE) based on Taguchi approach was used. Analysis the response of each experiment was based Signal to Noise (S/N) ratio was calculated. The effective parameters for the degradation of dye were determined and optimized using Taguchi (L9 (34)) orthogonal array experimental design method with four factors having three levels for each factor. The Taguchi approach showed that pH 3 (level 1), catalyst amount = 25 mg/L (level 2), H2O2 concentration = 15 ppm (level 3), and temperature = 35°C (level 3) was optimum conditions for this process. The factor most influencing the process was determined using analysis of variance (ANOVA) method. The most significant factor in this process was pH. The interaction between pH × catalyst amount was the most influencing interaction. The percent (p (%)) of each factor on the degradation of dye was found to be in the following the order: pH (50.306%), catalyst amount (6.887%), H2O2 concentration (39.272%), and temperature (3.456%). The percentage contribution of factors in this process was found to be in the following the order: pH (0.332), catalyst amount (0.101), H2O2 concentration (0.291), and temperature (0.082). So first order reaction with k = 0.0472 min–1 was observed for the photocatalytic degradation reaction.

Keywords:

statistical experimental design S/N ratio nanocatalyst Fe3O4 photo-Fenton dye pollutants 

Notes

ACKNOWLEDGMENTS

The author would like to gratefully acknowledge members of the Research Laboratory of Islamic Azad University, Tuyserkan Branch, Tuyserkan, Iran.

REFERENCES

  1. 1.
    K. Venkataraman, The Chemistry of Synthetic Dyes (Academic, New York, 1970).Google Scholar
  2. 2.
    H. Zollinger, Color Chemistry Synthesis, Properties, and Applications of Organic Dyes and Pigments, 3rd ed. (Wiley-VCH, Weinheim, 2003).Google Scholar
  3. 3.
    D. R. Waring and G. Hallas, The Chemistry and Application of Dyes (Plenum, New York, 1990).CrossRefGoogle Scholar
  4. 4.
    M. R. Sohrabi and M. Ghavami, Desalination 252, 157 (2010).CrossRefGoogle Scholar
  5. 5.
    S. G. Dai, Y. Y. Zhuang, L. Chen, and L. X. Chen, Environ. Chem. 14, 354 (1995).Google Scholar
  6. 6.
    A. P. Toor, A. Verma, C. K. Jotshi, P. K. Bajpai, and V. Singh, Dyes Pigm. 68, 53 (2006).CrossRefGoogle Scholar
  7. 7.
    P. K. Boruah, B. Sharma, I. Karbhal, M. V. Shelke, and M. R. Das, J. Hazard. Mater. 325, 90 (2017).CrossRefGoogle Scholar
  8. 8.
    M. E. Hassan, Y. Chen, G. Liu, D. Zhu, and J. Cai, J. Water Proc. Eng. 12, 52 (2016).CrossRefGoogle Scholar
  9. 9.
    T. Maezono, M. Tokumura, M. Sekine, and Y. Kawase, Chemosphere 82, 1422 (2011).CrossRefGoogle Scholar
  10. 10.
    F. Ay, E. C. Catalkaya, and F. Kargi, J. Hazard. Mater. 162, 230 (2009).CrossRefGoogle Scholar
  11. 11.
    J. C. Wang, J. Ren, H. C. Yao, L. Zhang, J. S. Wang, S. Q. Zang, L. F. Han, and Z. J. Li, J. Hazard. Mater. 311, 11 (2016).CrossRefGoogle Scholar
  12. 12.
    T. A. Gad-Allah, Sh. Kato, Sh. Satokawa, and T. Kojima, Desalination 244, 1 (2009).CrossRefGoogle Scholar
  13. 13.
    M. Huang, C. Xu, Z. Wu, Y. Huang, J. Lin, and J. Wu, Dyes Pigm. 77, 327 (2008).CrossRefGoogle Scholar
  14. 14.
    M. P. Elizalde-Gonzalez and V. Hernandez-Montoya, J. Hazard. Mater. 168, 515 (2009).CrossRefGoogle Scholar
  15. 15.
    H. Balavi, S. Samadanian-Isfahani, M. Mehrabani-Zeinabad, and M. Edrissi, Powder Technol. 249, 549 (2013).CrossRefGoogle Scholar
  16. 16.
    G. Li, K. H. Wong, X. Zhang, C. Hu, J. C. Yu, R. C. Y. Chan, and P. K. Wong, Chemosphere 76, 1185 (2009).CrossRefGoogle Scholar
  17. 17.
    J. H. Meng, G. Q. Yang, L. M. Yan, and X. Y. Wang, Dyes Pigm. 66, 109 (2005).CrossRefGoogle Scholar
  18. 18.
    W. T. Foster, in Proceedings of the National Association of Industrial Technology Conference, Pittsburgh, PA,2000.Google Scholar
  19. 19.
    R. Pundir, G. Chary, and M. Dastidar, Water Res. Ind. 20, 83 (2018).CrossRefGoogle Scholar
  20. 20.
    H. Atil and Y. Unver, Biol. Sci. 3, 1538 (2000).Google Scholar
  21. 21.
    K. Ranjit, Qualitek-4, Software for Automatic Design and Analysis of Taguchi Experiments (Nutek, Inc. Bloomfield Hills, Mich., 1996). www.Nutek-us.com/wp-q4w.html.Google Scholar
  22. 22.
    Y. S. Kang, S. Risbud, J. F. Rabolt, and P. Stroeve, Chem. Mater. 8, 2209 (1996).CrossRefGoogle Scholar
  23. 23.
    R. Moradi, Russ. J. Phys. Chem. A 92, 2781 (2018).CrossRefGoogle Scholar
  24. 24.
    D. P. Ojha, M. K. Joshi, and H. J. Joshi, Ceram. Int. 43, 1290 (2017).CrossRefGoogle Scholar
  25. 25.
    M. K. Joshi, H. R. Pant, N. Liao, J. H. Kim, H. J. Kim, C. H. Park, and C. S. Kim, J. Colloid Interface Sci. 453, 159 (2015).CrossRefGoogle Scholar
  26. 26.
    A. Afzali Nezhad, M. Alimoradi, and M. Ramezani, Mater. Res. Express 5, 025508 (2018).CrossRefGoogle Scholar
  27. 27.
    C. Wu, X. Liu, D. Wei, J. Fan, and L. Wang, Water Res. 35, 3927 (2001).CrossRefGoogle Scholar
  28. 28.
    N. M. Mahmoodi and M. Arami, J. Photochem. Photobiol. A: Chem. 182, 60 (2006).CrossRefGoogle Scholar
  29. 29.
    J. Saien, M. Asgari, A. R. Soleymani, and N. Taghavinia, Chem. Eng. J. 151, 295 (2009).CrossRefGoogle Scholar
  30. 30.
    N. Daneshvar, D. Salari, and A. R. Khataee, J. Photochem. Photobiol., A 157, 111 (2003).CrossRefGoogle Scholar
  31. 31.
    C. M. Zhu, L. Y. Wang, L. R. Kong, X. Yang, L. S. Wang, S. J. Zheng, and H. Zong, Chemosphere 41, 303 (2000).CrossRefGoogle Scholar
  32. 32.
    J. M. Lee, M. S. Kim, B. Hwang, W. Bae, and B. W. Kim, Dyes Pigm. 56, 59 (2003).CrossRefGoogle Scholar
  33. 33.
    P. J. Ross, Taguchi Techniques for Quality Engineering, 2nd ed. (McGraw-Hill, New York, 1996).Google Scholar
  34. 34.
    Y. Ma, X. Nie, D. O. Northwood, and H. Hu, Thin Solid Films 494, 296 (2006).CrossRefGoogle Scholar
  35. 35.
    J. Hosseini and A. Bodaghi, Portugal. Electrochim. Acta 31, 11 (2013).CrossRefGoogle Scholar
  36. 36.
    M. Torkaman, R. Moradi, and B. Keyvani, Rev. Roum. Chim. 61, 763 (2016).Google Scholar
  37. 37.
    M. M. Amin, M. M. Golbini Mofrad, H. Pourzamani, S. M. Sebaradar, and K. Ebrahim, J. Indus. Eng. Chem. 45, 412 (2017).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Department of Chemistry, Tuyserkan Branch, Islamic Azad UniversityTuyserkanIran
  2. 2.Department of Experimental Science, Kahnooj Branch, Islamic Azad UniversityKahnoojIran

Personalised recommendations