Advertisement

Russian Journal of Physical Chemistry A

, Volume 93, Issue 13, pp 2812–2816 | Cite as

Direct Hydroxylation of Benzene to Phenol by Dielectric Barrier Discharge Plasma

  • Wei Mi
  • Weiwei Han
  • Jin Li
  • Yajun Zheng
  • Zhiping ZhangEmail author
COLLOID CHEMISTRY AND ELECTROCHEMISTRY
  • 7 Downloads

Abstract

Direct synthesis of phenol from benzene was realized using atmospheric dielectric barrier discharge (DBD) plasma. In the process, various experimental parameters such as irradiation time, electrode height, and discharge power were found to play crucial roles in determining the yield and selectivity of phenol. Also, serious carbonization phenomenon was observed at the surface of used electrode due to the extensive interaction between benzene and electrode, which greatly inhibited the hydroxylation of benzene to phenol. To resolve this issue, silica coated electrode was employed, and significant improvement of conversion efficiency was obtained. The yield of phenol as high as 19.5% could be obtained in the optimal condition, and its selectivity was 83.3% based on the analysis of gas chromatography-mass spectrometry.

Keywords:

benzene hydroxylation phenol electrode dielectric barrier discharge 

Notes

ACKNOWLEDGMENTS

The authors acknowledge the funding from the National Natural Science Foundation of China (nos. 21575112, 21777128, and 21705125).

CONFLICTS OF INTEREST

There are no conflicts to declare.

REFERENCES

  1. 1.
    J. Xu, Y. Chen, Y. Hong, H. Zheng, D. Ma, B. Xue, and Y. X. Li, Appl. Catal. A 549, 31 (2017).CrossRefGoogle Scholar
  2. 2.
    R. J. Schmidt, Appl. Catal., A 280, 89 (2005).Google Scholar
  3. 3.
    K. Hirose, K. Ohkubo, and S. Fukuzumi, Chem. Eur. J. 22, 12904 (2016).CrossRefGoogle Scholar
  4. 4.
    Y. Morimoto, S. Bunno, N. Fujieda, H. Sugimoto, and S. Itoh, J. Am. Chem. Soc. 137, 5867 (2015).CrossRefGoogle Scholar
  5. 5.
    P. Borah, X. Ma, K. T. Nguyen, and Y. Zhao, Angew. Chem. Int. Ed. 51, 7756 (2012).CrossRefGoogle Scholar
  6. 6.
    A. J. J. Koekkoek, W. Kim, V. Degirmenci, H. Xin, R. Ryoo, and E. J. M. Hensen, J. Catal. 299 (Suppl. C), 81 (2013).CrossRefGoogle Scholar
  7. 7.
    T. Tsuji, A. A. Zaoputra, Y. Hitomi, K. Mieda, T. Ogura, Y. Shiota, K. Yoshizawa, H. Sato, and M. Kodera, Angew. Chem. Int. Ed. 56, 7779 (2017).CrossRefGoogle Scholar
  8. 8.
    G. Wen, S. Wu, B. Li, C. Dai, and D. S. Su, Angew. Chem. Int. Ed. 54, 4105 (2015).CrossRefGoogle Scholar
  9. 9.
    W. Wang, G. Ding, T. Jiang, P. Zhang, T. Wu, and B. Han, Green Chem. 15, 1150 (2013).CrossRefGoogle Scholar
  10. 10.
    S. I. Niwa, M. Eswaramoorthy, J. Nair, A. Raj, N. Itoh, H. Shoji, T. Namba, and F. Mizukami, Science (Washington, DC, U. S.) 295, 105 (2002).CrossRefGoogle Scholar
  11. 11.
    Y. Gao, Y. Gao, L. Shi, and Q. Sun, Catal. Lett. 147, 2799 (2017).CrossRefGoogle Scholar
  12. 12.
    G. Ding, W. Wang, T. Jiang, B. Han, H. Fan, and G. Yang, ChemCatChem 5, 192 (2013).CrossRefGoogle Scholar
  13. 13.
    R. Dittmeyer and L. Bortolotto, Appl. Catal. A 391, 311 (2011).CrossRefGoogle Scholar
  14. 14.
    B. Lee, H. Naito, and T. Hibino, Angew. Chem. Int. Ed. 51, 440 (2012).CrossRefGoogle Scholar
  15. 15.
    K. Ohkubo, A. Fujimoto, and S. Fukuzumi, J. Am. Chem. Soc. 135, 5368 (2013).CrossRefGoogle Scholar
  16. 16.
    X. Lang, X. Chen, and J. Zhao, Chem. Soc. Rev. 43, 473 (2014).CrossRefGoogle Scholar
  17. 17.
    Y. W. Zheng, B. Chen, P. Ye, K. Feng, W. Wang, Q. Y. Meng, L. Z. Wu, and C. H. Tung, J. Am. Chem. Soc. 138, 10080 (2016).CrossRefGoogle Scholar
  18. 18.
    O. Shoji, T. Kunimatsu, N. Kawakami, and Y. Watanabe, Angew. Chem. Int. Ed. 52, 6606 (2013).CrossRefGoogle Scholar
  19. 19.
    C. Mukarakate, J. D. Mcbrayer, T. J. Evans, S. Budhi, D. J. Robichaud, K. Iisa, J. T. Dam, M. J. Watson, R. M. Baldwin, and M. R. Nimlos, Green Chem. 17, 4217 (2015).CrossRefGoogle Scholar
  20. 20.
    L. Wang, Y. Yi, C. Wu, H. Guo, and X. Tu, Angew. Chem. Int. Ed. 56, 13679 (2017).CrossRefGoogle Scholar
  21. 21.
    Y. Yi, R. Zhang, L. Wang, J. Yan, J. Zhang, and H. Guo, ACS Omega 2, 9199 (2017).CrossRefGoogle Scholar
  22. 22.
    D.-W. Lee, J.-H. Lee, B.-H. Chun, and K.-Y. Lee, Plasma Chem. Plasma Process. 23, 519 (2003).CrossRefGoogle Scholar
  23. 23.
    H. Sekiguchi, M. Ando, and H. Kojima, J. Phys. D: Appl. Phys. 38, 1722 (2005).CrossRefGoogle Scholar
  24. 24.
    D. Ascenzi, P. Franceschi, G. Guella, and P. Tosi, J. Phys. Chem. A 110, 7841 (2006).CrossRefGoogle Scholar
  25. 25.
    Y.-J. Liu, X.-Z. Jiang, and L. Wang, Plasma Chem. Plasma Process. 27, 496 (2007).CrossRefGoogle Scholar
  26. 26.
    M. Agung, S. Nomura, S. Mukasa, H. Toyota, O. Kazuhiko, and H. Goto, Plasma Sci. Technol. 19, 60 (2017).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • Wei Mi
    • 1
  • Weiwei Han
    • 1
  • Jin Li
    • 1
  • Yajun Zheng
    • 1
  • Zhiping Zhang
    • 1
    Email author
  1. 1.School of Chemistry and Chemical Engineering, Xi’an Shiyou UniversityXi’anChina

Personalised recommendations