Advertisement

Volumetric Properties of Amino Acids in Aqueous Solutions of Glucosamine Hydrochloride at T = 293.15–313.15 K

  • 7 Accesses

Abstract

The densities (ρ) of glycine, L-alanine, L-serine, and L-threonine solutions in 0.05, 0.10, 0.15, 0.20, and 0.30 mol kg–1 aqueous solutions of D-glucosamine hydrochloride have been measured at T = 293.15, 298.15, 303.15, 308.15, and 313.15 K. The apparent molar volumes (Vϕ), limiting partial molar volumes (\(V_{\phi }^{0}\)) of the amino acids have been calculated from the density data. Transfer partial molar volumes (∆tr\(V_{\phi }^{0}\)) and hydration numbers from water to the aqueous solutions of D-glucosamine hydrochloride were also obtained. These parameters of volumetric properties can help to understand the mixing effects and interactions between amino acids and D-glucosamine hydrochloride aqueous solution.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Fig. 1.

REFERENCES

  1. 1

    T. S. Banpial, K. Singh, and P. K. Banipal, J. Solut. Chem. 36, 1635 (2007).

  2. 2

    N. G. Harutyunyan, L. R. Harutyunyan, and R. S. Harutyunyan, Thermochim. Acta 498, 124 (2010).

  3. 3

    R. Badarayani and A. Kumar, J. Chem. Eng. Data 48, 664 (2003).

  4. 4

    T. S. Banipal, J. Kaur, P. K. Banipal, A. K. Sood, and K. Singh, J. Chem. Eng. Data 56, 2751 (2011).

  5. 5

    Q. Yuan, Z. F. Li, and B. H. Wang, J. Chem. Thermodyn. 38, 20 (2006).

  6. 6

    A. A. Zamyatnin, Biophys. Bioeng. 13, 145 (1984).

  7. 7

    T. V. Chalikian and R. Annu, Biophys. Biomol. Struct. 32, 207 (2003).

  8. 8

    N. V. Sastry, P. H. Valand, and P. M. Macwan, J. Chem. Eng. Data 56, 627 (2011).

  9. 9

    M. S. Santosh, D. K. Bhat, and A. S. Bhatt, J. Chem. Eng. Data 56, 768 (2011).

  10. 10

    S. Roy, A. Hossain, K. Mahali, and B. K. Dolui, Russ. J. Phys. Chem. 89, 2111 (2015).

  11. 11

    J. Y. Reginster, R. Deroisy, L. C. Rovati, R. L. Lee, E. Lejeune, O. Bruyere, G. Giacovelli, Y. Henrotin, J. E. Dacre, and C. Gossett, Lancet 357, 251 (2001).

  12. 12

    F. Zahedipour, R. Dalirfardouei, G. Karimi, and K. Jamialahmadi, Biomed. Pharmacother. 95, 1051 (2017).

  13. 13

    Y. Tamai, K. Miyatake, Y. Okamoto, Y. Takamori, H. Sakamoto, and S. Minami, Carbohydr. Polym. 48, 369 (2002).

  14. 14

    R. Xing, S. Liu, Z. Guo, H. Yu, C. Li, X. Ji, J. Feng, and P. Li, Bioorg. Med. Chem. 14, 1706 (2006).

  15. 15

    S. Fang and D. H. Ren, J. Chem. Eng. Data 58, 845 (2013).

  16. 16

    M. J. Iqbal and M. A. Chaudhry, J. Chem. Eng. Data 54, 2772 (2009).

  17. 17

    X. Wang, G. Q. Li, Y. H. Guo, Q. Zheng, W. J. Fang, P. F. Bian, and L. J. Zhang, J. Chem. Thermodyn. 78, 128 (2014).

  18. 18

    Y. Chen, R. Fu, J. Xu, W. Du, X. Wang, and W. Fang, J. Chem. Thermodyn. 113, 388 (2017).

  19. 19

    J. M. Moses, S. S. Dhondge, L. J. Paliwal, S. P. Zodape, and P. H. Shende, J. Chem. Thermodyn. 93, 8 (2016).

  20. 20

    M. J. Iqbal and M. A. Chaudhry, J. Chem. Eng. Data 54, 2772 (2009).

  21. 21

    S. Terasawa, H. Itsuki, and S. Arakawa, J. Phys. Chem. 79, 2345 (1975).

  22. 22

    J. Zhang, T. Fu, C. Zhu, and Y. Ma, J. Mol. Liq. 242, 190 (2017).

  23. 23

    R. W. Gurney, Ionic Process in Solution (McGraw Hill, New York, 1953).

  24. 24

    H. S. Franks and E. W. Evans, J. Chem. Phys. 13, 507 (1945).

  25. 25

    T. S. Banipal, G. Singh, and B. S. Lark, J. Solution Chem. 30, 657 (2001).

  26. 26

    H. Xie, L. Zhao, C. Liu, Y. Cao, X. Lu, Q. Lei, and W. Fang, J. Chem. Thermodyn. 99, 75 (2016).

  27. 27

    F. J. Millero, L. S. Antonio, and S. Charles, J. Phys. Chem. 82, 784 (1978).

  28. 28

    E. Berlin and M. J. Pallansch, J. Phys. Chem. 72, 1887 (1968).

Download references

ACKNOWLEDGMENTS

The authors are grateful to the Natural Science Foundation of Shandong Province (ZR2016BQ40).

Author information

Correspondence to Dan Li.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dan Li, Guo, M., Kong, X. et al. Volumetric Properties of Amino Acids in Aqueous Solutions of Glucosamine Hydrochloride at T = 293.15–313.15 K. Russ. J. Phys. Chem. 93, 2635–2644 (2019). https://doi.org/10.1134/S0036024419130132

Download citation

Keywords:

  • glucosamine
  • amino acid
  • density
  • apparent molar volume
  • hydration number