Russian Journal of Physical Chemistry A

, Volume 93, Issue 13, pp 2735–2743 | Cite as

The Effect of Alkyl Chain Length in Quaternary Ammonium Cationic Surfactants on Their Foaming Properties

  • Minlan Gao
  • Fuqiang Lei
  • Qiaona Liu
  • Zhifei Song
  • Rongjun Zhang
  • Jie Zhang
  • Gang ChenEmail author


In this study, foaming properties of four quaternary ammonium cationic surfactants dodecyltri-methylammonium chloride (1231), tetradecyltrimethylammonium chloride (1431), cetyltrimethylammonium chloride (1631), and octadecyltrimethylammonium chloride (1831) were investigated by the high stirring method. The microstructures of the surfactants were compared, and the effects of temperature, inorganic salts and methanol on the foaming activity of the cationic surfactants were studied. The results show that the lowest critical micelle concentration was gotten by 1831, which is 2.59 × 10–3 mmol L–1. The alkyl chain affects the Krafft point, and the longer the hydrocarbon chain is, the higher the Krafft point is. The foaming property of 1631 is the best, and the foaming volume of 1631 is 467 mL of which the half-life time can reach to 370.6 s. 1231 has the higher resistance to methanol and salinity. By investigating the microstructure of foam, the most stable foam is formed by 1631, and there is almost no polyhedron foam. All the results show that the alkyl chain of the quaternary ammonium cationic surfactants affects the foaming activity obviously, which may benefit the research and use of them in the related fields.


cationic surfactants surface tension foaming ability foaming stabilization 



This work was financially supported by the grants from National Science Foundation of China (41202214, 51774184)) and Scientific Research Program of Shaanxi Provincial Education Department (18JC025).


  1. 1.
    Y. J. Sheng, X. J. Wu, and S. X. Lu, J. Surfact. Deterg. 19, 8237 (2016).CrossRefGoogle Scholar
  2. 2.
    G. Chen, Y. Bai, Q. N. Liu, J. Zhang, X. F. Gu, H. Li, C. T. Qu, and Y. M. Zhang, J. Surfact. Deterg. 22, 691 (2019).Google Scholar
  3. 3.
    G. Chen, J. Yan, Q. N. Liu, J. Zhang, H. Li, J. L. Li, C. T. Qu, and Y. M. Zhang, Cr. Chim. 22 (4), 277 (2019).Google Scholar
  4. 4.
    H. Azira, A. Tazerouti, and J. P. Canselier, J. Surfact. Deterg. 11, 279 (2008).CrossRefGoogle Scholar
  5. 5.
    G. Chen, J. Zhang, C. Cheng, Y. Sun, Q. Hu, C. T. Qu, and S. B. Dong, J. Petrol. Sci. Eng. 183, 106420 (2019).Google Scholar
  6. 6.
    K. G. Kornev, A. V. Neimark, and A. N. Rozhkov, Adv. Colloid Interface Sci. 82, 127 (1999).CrossRefGoogle Scholar
  7. 7.
    S. A. Koehler, S. Hilgenfeldt, and H. A. Stone, Langmuir 16, 6327 (2000).CrossRefGoogle Scholar
  8. 8.
    M. L. Gao, J. Zhang, Q. N. Liu, J. L. Li, R. J. Zhang, and G. Chen, CR. Chim. 22, 355 (2019).Google Scholar
  9. 9.
    F. M. Menger and C. A. Littau, J. Am. Chem. Soc. 115, 10083 (1993).CrossRefGoogle Scholar
  10. 10.
    F. M. Menger and J. S. Keiper, Angew. Chem., Int. Ed. 39, 1906 (2000).CrossRefGoogle Scholar
  11. 11.
    R. Zana, J. Colloid Interface Sci. 248, 203 (2002).CrossRefGoogle Scholar
  12. 12.
    A. J. Wilson, Foams: Physics, Chemistry, and Structure (Springer, London, 1989), p. 167.CrossRefGoogle Scholar
  13. 13.
    B. M. Folmer and B. Krongberg, Langmuir 16, 5987 (2000).CrossRefGoogle Scholar
  14. 14.
    K. Lunkenheimer and K. Malysa, J. Surfact. Deterg. 6, 69 (2003).CrossRefGoogle Scholar
  15. 15.
    P. D. Patel, A. M. Stripp, and J. C. Fry, J. Food Sci. Tech. 23, 57 (1988).CrossRefGoogle Scholar
  16. 16.
    E. Kuliszwska and L. Brecker, J. Surfact. Deterg. 17, 951 (2014).CrossRefGoogle Scholar
  17. 17.
    B. M. Folmer and B. Kronberg, Langmuir 16, 5987 (2000).CrossRefGoogle Scholar
  18. 18.
    K. Lunkenheimer and K. Malysa, J. Surfact. Deterg. 6, 69 (2003).CrossRefGoogle Scholar
  19. 19.
    J. Goerke and J. A. Clements, in Handbook of Physiology, Sect. 3: The Respiratory System, Vol. 3: Mechanics of Breathing (Am. Physiol. Soc., Bethesda, MD, 1986), part 2, Chap. 16, p. 247.Google Scholar
  20. 20.
    N. A. Negm, A. A. Mohamed, and M. Y. El-Awady, Egypt. J. Chem. 47, 369 (2004).Google Scholar
  21. 21.
    M. J. Rosen and Z. H. Zhu, J. Am. Oil Chem. Soc. 65, 663 (1988).CrossRefGoogle Scholar
  22. 22.
    W. P. Yant, H. H. Schrenk, and R. R. Sayers, Ind. Eng. Chem. 23, 551 (2002).CrossRefGoogle Scholar
  23. 23.
    H. Yanni, F. Gangdan, J. Youliang, et al., Chem. Eng. Oil Gas 45, 72 (2016).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • Minlan Gao
    • 1
  • Fuqiang Lei
    • 1
  • Qiaona Liu
    • 1
  • Zhifei Song
    • 3
  • Rongjun Zhang
    • 1
    • 2
  • Jie Zhang
    • 1
  • Gang Chen
    • 1
    • 2
    Email author
  1. 1.Shaanxi Province Key Laboratory of Environmental Pollution Control and Reservoir Protection Technology of Oilfields, Xi’an Shiyou UniversityXi’anChina
  2. 2.State Key Laboratory of Petroleum Pollution Control, CNPC Research Institute of Safety and Environmental TechnologyBeijingChina
  3. 3.School of Civil Engineering, North China University of TechnologyBeijingChina

Personalised recommendations