Advertisement

Russian Journal of Physical Chemistry A

, Volume 93, Issue 13, pp 2604–2612 | Cite as

High Performance Removal of Azo and Cationic Dyes Pollutants with Mn-Aluminophosphate Particles: Kinetics, Thermodynamics, and Adsorption Equilibrium Studies

  • Zohreh DerikvandEmail author
  • Sara Akbari
  • Ghazaleh Kouchakzadeh
  • Azadeh Azadbakht
  • Andya Nemati
CHEMICAL THERMODYNAMICS AND THERMOCHEMISTRY

Abstract

Manganese aluminophosphate (Mn–APO) microcrystals have been synthesized by hydrothermal method and characterized with X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and energy dispersive X-ray spectroscopy (EDX). As a potential application in water treatment, Mn–APO particles were evaluated in removal of safranin (CAF) and chrysoidine G (CHG) dyes from aqueous solution. The effects of initial concentrations and pH, contact time, dosage of adsorbent, and temperature were investigated on the dye adsorption capacity of the Mn–APO. The experimental data revealed that an amount of 0.1 g of sorbent demonstrated maximum removal efficiency of CAF and CHG dyes (30 ppm) at pH 7. Two common kinetic models, pseudo-first-order and pseudo-second-order were applied to explain the adsorption kinetics. The adsorption kinetics of CHG and SAF was found to follow a pseudo-second-order kinetic model. Thermodynamic results indicated that the adsorption of CHG and SAF onto Mn–APO particles is endothermic and negative value of ΔG° confirms the spontaneous process. The particles of Mn–APO can be easily regenerated by chemical and physical methods after adsorption. Three common isotherm models, the Langmuir, Temkin and Freundlich were employed to study the interaction of CHG and SAF onto Mn–APO particles. The equilibrium adsorption of Mn–APO was best explained by the Temkin isotherm model. The recycled sorbent can be use after 3 cycles without noticeable change in its activity. The obtained maximum adsorption capacities correspond to an excellent ability to remove dye at ambient temperature. The present study not only introduces new materials for highly efficient and recyclable sorbent, but also facilitates their practical application in environmental remediation.

Keywords:

adsorption manganese aluminophosphate safranin chrysoidine G cationic dye 

REFERENCES

  1. 1.
    R. Malik, D. S. Ramteke, and S. R. Wate, Waste Manage. 27, 1129 (2007).CrossRefGoogle Scholar
  2. 2.
    T. Robinson, G. McMullan, R. Marchant, and P. Nigam, Bioresour. Technol. 77, 247 (2001).CrossRefGoogle Scholar
  3. 3.
    P. R. Chowdhury and K. G. Bhattacharyya, Dalton Trans. 44, 6809 (2015).CrossRefGoogle Scholar
  4. 4.
    L. Zhang, H. Li, Y. Liu, Z. Tian, B. Yang, Z. Sun, and S. Yan, RSC Adv. 4, 48703 (2014).Google Scholar
  5. 5.
    D. Channei, B. Inceesungvorn, N. Wetchakun, S. Ukritnukun, A. Nattestad, J. Chen, and S. Phanichphant, Sci. Rep. 4, 5757 (2014).CrossRefGoogle Scholar
  6. 6.
    H. Y. Zhu, R. Jiang, L. Xiao, and W. Li, J. Hazard. Mater. 179, 251 (2010).CrossRefGoogle Scholar
  7. 7.
    M. Solis, A. Solis, H. I. Perez, N. Manjarrez, and M. Flores, Process Biochem. 47, 1723 (2012).CrossRefGoogle Scholar
  8. 8.
    S. Preethi, A. Sivasamy, S. Sivanesan, V. Ramamurthi, and G. Swaminathan, Ind. Eng. Chem. Res. 45, 7627 (2006).CrossRefGoogle Scholar
  9. 9.
    V. K. Gupta and Suhas, J. Environ. Manage. 90, 2313 (2009).CrossRefGoogle Scholar
  10. 10.
    G. Mezohegyi, F. P. van der Zee, J. Font, A. Fortuny, and A. Fabregat, J. Environ. Manage. 102, 148 (2012).CrossRefGoogle Scholar
  11. 11.
    M. N. Ahmad and R. N. Ram, Environ. Pollut. 77, 79 (1992).CrossRefGoogle Scholar
  12. 12.
    G. McKay, Am. Dyes. Rep. 68, 29 (1979).Google Scholar
  13. 13.
    B. HaiTan, T. TowTeng, and A. K. Mohd Omar, Water Res. 34, 597 (2000).Google Scholar
  14. 14.
    A. M. Dziubek and A. L. Kowal, in Proceedings of the International Conference, Toulouse, France,1983, p. 205.Google Scholar
  15. 15.
    S. Beulker and M. Jekel, Water. Sci. Technol. 28, 193 (1993).CrossRefGoogle Scholar
  16. 16.
    D. H. Bennett and D. Reeser, in Proceedings of the Environmental Conference, Charleston,1988, p. 199.Google Scholar
  17. 17.
    A. Henglein, Top. Curr. Chem. 143, 113 (1988).CrossRefGoogle Scholar
  18. 18.
    Q. Chen, Q. He, M. Lv, Y. Xu, H. Yang, X. Liu, and F. Wei, Appl. Surf. Sci. 327, 77 (2015).CrossRefGoogle Scholar
  19. 19.
    G. Crini, Bioresour. Technol. 97, 1061 (2006).CrossRefGoogle Scholar
  20. 20.
    T. Ali, M. Asim, and T. A. Khan, J. Environ. Manage. 113, 170 (2012).CrossRefGoogle Scholar
  21. 21.
    T. Bein and S. Mintova, in Zeolites and Ordered Mesoporous Materials, Progress, and Prospects, Ed. by J. Cejka and H. van Bekkum (Elsevier, Amsterdam, 2005).Google Scholar
  22. 22.
    Z. B. Wang, A. P. Mitra, H. T. Wang, L. M. Huang, and Y. Yan, Adv. Mater. 13, 1463 (2001).CrossRefGoogle Scholar
  23. 23.
    G. H. Li, C. A. Jones, V. H. Grassian, and S. C. Larsen, J. Catal. 235, 431 (2005).CrossRefGoogle Scholar
  24. 24.
    Bidyadhar Mandal and Samit Kumar Ray, Carbohydr. Polym. 98, 257 (2013).CrossRefGoogle Scholar
  25. 25.
    H. Molavi, A. Eskandari, A. Shojaei, and S. A. Mousavi, Microporous Mesoporous Mater. 257, 193 (2018).CrossRefGoogle Scholar
  26. 26.
    I. Ardelean and C. Horea, J. Optoelectron. Adv. 8, 1111 (2006).Google Scholar
  27. 27.
    K. P. Muller, Glasstech. Ber. 42, 83 (1969).Google Scholar
  28. 28.
    I. Ardelean, C. Andronache, C. Campean, and P. Pascuta, Mod. Phys. Lett. B 18, 45 (2004).CrossRefGoogle Scholar
  29. 29.
    S. Hashemian and M. Mirshamsi, J. Ind. Eng. Chem. 18, 2010 (2012).CrossRefGoogle Scholar
  30. 30.
    S. Zhang, W. Xu, M. Zeng, J. Li, J. Li, J. Xu, and X. Wang, J. Mater. Chem. A 1, 11691 (2013).CrossRefGoogle Scholar
  31. 31.
    M. Arshadi, F. Salimi Vahid, J. W. L Salvacion, and M. Soleymanzadeh, RSC Adv. 4, 16005 (2014).CrossRefGoogle Scholar
  32. 32.
    M. Abbas, S. Kaddour, and M. Trari, J. Ind. Eng. Chem. 20, 745 (2014).CrossRefGoogle Scholar
  33. 33.
    D. Hu and L. Wang, J. Taiwan Inst. Chem. Eng. 64, 227 (2016).Google Scholar
  34. 34.
    S. N. Tambat, P. K. Sane, S. Suresh, Nilesh Varadan O., A. B. Pandit, and S. M. Sontakke, Adv. Powder Technol. 29, 2626 (2018).CrossRefGoogle Scholar
  35. 35.
    S. Preethi, A. Sivasamy, S. Sivanesan, V. Ramamurthi, and G. Swaminathan, Ind. Eng. Chem. Res. 45, 7627 (2006).CrossRefGoogle Scholar
  36. 36.
    J. Shu, Z. Wang, Y. Huang, N. Huang, C. Ren, and W. Zhang, J. Alloys Compd. 633, 338 (2015).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • Zohreh Derikvand
    • 1
    Email author
  • Sara Akbari
    • 1
  • Ghazaleh Kouchakzadeh
    • 1
  • Azadeh Azadbakht
    • 1
  • Andya Nemati
    • 2
  1. 1.Department of Chemistry, Khorramabad Branch, Islamic Azad UniversityKhorramabadIran
  2. 2.Iranian Institute for Encyclopedia Research, Saadat AbadTehranIran

Personalised recommendations