Advertisement

Russian Journal of Physical Chemistry A

, Volume 93, Issue 11, pp 2152–2157 | Cite as

Antioxidant Properties of Amino Acid Derivatives of Fullerene C60

  • V. A. Volkov
  • O. V. YamskovaEmail author
  • N. E. Shepel’
  • V. S. Romanova
  • D. V. Kurilov
  • A. V. Tregubov
  • O. V. Vyshivannaya
  • M. V. Voronkov
  • I. A. Yamskov
  • V. M. Misin
  • N. D. Zubareva
  • L. M. Kustov
CHEMICAL KINETICS AND CATALYSIS
  • 8 Downloads

Abstract

A comparative study of the relative antioxidant activity (RAA) of fullerene С60 and its amino acid derivatives is performed via amperometry and fluorimetry. The sizes of nanoparticles in the corresponding colloidal solutions are determined via dynamic light scattering (photon correlation spectroscopy) to study the effect the steric factors of the investigated compounds have on the magnitude of the RAA. Data are subjected to statistical correlation regression analysis using results obtained for the RAA dependence of fullerene С60 and salt forms of its acid derivatives on the corresponding sizes of nanoparticles in colloidal aqueous solutions. A close negative (inverse) correlation is identified between the size of nanoparticles in a solution and their antioxidant properties, with a pronounced synergic effect related to the influence of both chemical structure of the studied compounds and their structural organization in colloid solution. It is found that the structure of a substituent in a molecule of amino acid derivative of fullerene С60 also influences the size of the forming nanoparticles. At the same time, reductive properties of amino acid derivatives of fullerene С60 are generally determined by the electron effects of substituents.

Keywords:

fullerene С60 amino acid derivatives of fullerene С60 amperometry fluorimetry dynamic light scattering photon correlation spectroscopy relative antioxidant activity nanoparticles 

Notes

REFERENCES

  1. 1.
    T. Sun and Z. Xu, Bioorg. Med. Chem. Lett. 16, 3731 (2006).CrossRefGoogle Scholar
  2. 2.
    S. Kato, H. Aoshima, Y. Saitoh, et al., J. Nanosci. Nanotechnol. 11, 3814 (2011).CrossRefGoogle Scholar
  3. 3.
    S. V. Gudkov, E. L. Guryev, A. B. Gapeyev, et al., Nanomedicine 15, 37 (2018).  https://doi.org/10.1016/j.nano.2018.09.001 CrossRefPubMedGoogle Scholar
  4. 4.
    J. Grebowski, P. Kazmierska, G. Litwinienko, et al., Biochim. Biophys. Acta: Biomembr. 1860, 1528 (2018).  https://doi.org/10.1016/j.bbamem.2018.05.005 CrossRefGoogle Scholar
  5. 5.
    R. Koeppe and N. S. Sariciftci, Photochem. Photobiol. Sci. 5, 1122 (2006).CrossRefGoogle Scholar
  6. 6.
    Y. Yamakoshi, N. Umezawa, A. Ryu, et al., J. Am. Chem. Soc. 125, 12803 (2003).CrossRefGoogle Scholar
  7. 7.
    J. López-Andarias, A. Frontera, and S. Matile, J. Am. Chem. Soc. 139, 13296 (2017).CrossRefGoogle Scholar
  8. 8.
    D. Gust, T. A. Moore, and A. L. Moore, J. Photochem. Photobiol. B 58, 63 (2000).CrossRefGoogle Scholar
  9. 9.
    A. G. Bobylev, N. V. Penkov, P. A. Troshin, and S. V. Gudkov, Biophysics 60, 30 (2015).CrossRefGoogle Scholar
  10. 10.
    S. M. Andreev, D. D. Purgina, E. N. Bashkatova, A. V. Garshev, A. V. Maerle, and M. R. Khaitov, Nanotechnol. Russ. 9, 369 (2014).CrossRefGoogle Scholar
  11. 11.
    S. Burgess, A. Vishnyakov, C. Tsovko, and A. V. Neimark, J. Phys. Chem. Lett. 9, 4872 (2018).  https://doi.org/10.1021/acs.jpclett.8b01696 CrossRefPubMedGoogle Scholar
  12. 12.
    S. Park, Y. Xie, and M. J. Weaver, Langmuir 18, 5792 (2002).  https://doi.org/10.1021/la0200459 CrossRefGoogle Scholar
  13. 13.
    Y. Sun, Z. Qian, and G. Wei, Phys. Chem. Chem. Phys. 18, 12582 (2016).CrossRefGoogle Scholar
  14. 14.
    A. Ya. Yashin, Ross. Khim. Zh. 52 (2), 130 (2008).Google Scholar
  15. 15.
    V. V. Biryukov, Khim. Rastit. Syr’ya, No. 3, 169 (2013).Google Scholar
  16. 16.
    B. Ou, M. Hampsch-Woodill, and R. L. Prior, J. Agric. Food Chem. 49, 4619 (2001).  https://doi.org/10.1021/jf010586o CrossRefPubMedGoogle Scholar
  17. 17.
    P. Stepanek, Dynamic Light Scattering. The Method and Some Applications, Ed. by W. Brown (Clarendron, Oxford, 1993).Google Scholar
  18. 18.
    S. W. Provencher, Comput. Phys. Commun. 27, 229 (1982).  https://doi.org/10.1016/0010-4655(82)90174-6 CrossRefGoogle Scholar
  19. 19.
    O. V. Yamskova, Yu. G. Kolyagin, V. S. Romanova, A. S. Egorov, D. V. Kurilov, I. A. Yamskov, N. D. Zubareva, and L. M. Kustov, Russ. J. Phys. Chem. A 93, 308 (2019).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • V. A. Volkov
    • 1
  • O. V. Yamskova
    • 2
    Email author
  • N. E. Shepel’
    • 2
  • V. S. Romanova
    • 2
  • D. V. Kurilov
    • 3
  • A. V. Tregubov
    • 2
  • O. V. Vyshivannaya
    • 2
  • M. V. Voronkov
    • 1
  • I. A. Yamskov
    • 2
  • V. M. Misin
    • 1
  • N. D. Zubareva
    • 3
  • L. M. Kustov
    • 3
  1. 1.Emanuel Institute of Biochemical Physics, Russian Academy of SciencesMoscowRussia
  2. 2.Nesmeyanov Institute of Organoelement CompoundsMoscowRussia
  3. 3.Zelinsky Institute of Organic ChemistryMoscowRussia

Personalised recommendations