Advertisement

Russian Journal of Physical Chemistry A

, Volume 93, Issue 11, pp 2291–2296 | Cite as

Ways of Estimating the Hold-up Time of a Gas Chromatographic System

  • V. E. Shiryaeva
  • T. P. Popova
  • A. Yu. Kanat’eva
  • A. A. Korolev
  • A. A. KurganovEmail author
PHYSICAL CHEMISTRY OF SEPARATION PROCESSES: CHROMATOGRAPHY
  • 2 Downloads

Abstract

Different ways of estimating the hold-up time of a system in gas chromatography are considered. It is shown that the hold-up time found from aerodynamic dependences proves to be minimal, but does not allow for the contribution from extracolumnar effects. The hold-up time, determined experimentally from the retention time of an unretainable sorbate (methane), proves to be maximal and depends on the intensity of sorbate–stationary phase interaction. The hold-up time found from the purely empiric correlation between the logarithm of the net retention time of homologs and the number of carbon atoms is intermediate between the theoretical and experimental values. It is shown that the correlation between the number of carbon atoms in a homological series and the relative retention time of sorbates (rather than their net retention time) is grounded thermodynamically. Corresponding correlations are proposed that allow estimates not only of the hold-up time of a system but also of such parameters as the phase ratio and the change in the free energy of a methylene unit during sorption on the stationary phase.

Keywords:

gas chromatography system hold-up time modeling 

Notes

FUNDING

This work was performed as part of the research program of the Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences.

REFERENCES

  1. 1.
    V. A. Davankov, Pure Appl. Chem. 73, 969 (2001).CrossRefGoogle Scholar
  2. 2.
    A. K. Hilmi, J. Chromatogr. 17, 407 (1965).Google Scholar
  3. 3.
    M. S. Wainwright and J. K. Haken, J. Chromatogr. 184, 1 (1980).Google Scholar
  4. 4.
    H. Groenendijk and A. W. C. van Kemenade, Chromatografia 1, 472 (1968).CrossRefGoogle Scholar
  5. 5.
    J. F. Parcher and M. I. Selim, Anal. Chem. 51, 2154 (1979).CrossRefGoogle Scholar
  6. 6.
    X. Guardino and J. Albaiges, J. Chromatogr. 118, 13 (1976).Google Scholar
  7. 7.
    J. R. Ashes, S. C. Mills, and J. K. Haken, J. Chromatogr. 166, 391 (1978).Google Scholar
  8. 8.
    S. Masukawa and R. J. Kobayashi, J. Gas Chromatogr. 6, 257 (1968).CrossRefGoogle Scholar
  9. 9.
    S. Masukawa and R. Kobayashi, J. Gas Chromatogr. 6, 461 (1968).CrossRefGoogle Scholar
  10. 10.
    S. Masukawa, J. I. Alyea, and R. Kobayashi, J. Gas Chromatogr. 6, 266 (1968).CrossRefGoogle Scholar
  11. 11.
    Y. Hori and R. Kobayashi, J. Chem. Phys. 54, 1226 (1971).CrossRefGoogle Scholar
  12. 12.
    T. Nakahara, P. S. Chappelear, and R. Kobayashi, Ind. Eng. Chem. Fundam. 16, 220 (1977).CrossRefGoogle Scholar
  13. 13.
    M. Peterson and J. Hirsch, J. Lipid Res. 1, 132 (1959).Google Scholar
  14. 14.
    H. J. Gold, Anal. Chem. 34, 174 (1962).CrossRefGoogle Scholar
  15. 15.
    R. J. Smith, J. K. Haken, and M. S. Wainwright, J. Chromatogr. 334, 95 (1985).Google Scholar
  16. 16.
    V. M. Nabivach and V. P. Dmitrikov, Russ. Chem. Rev. 62, 23 (1993).CrossRefGoogle Scholar
  17. 17.
    H. Grajek, J. Chromatogr., A 1145, 1 (2007).Google Scholar
  18. 18.
    V. F. Ochkov, Physical and Economic Values in Mathcad and Maple (Finansy Statistika, Moscow, 2002) [in Russian]. http://twt.mpei.ac.ru/ochkov/Units/Forword_book.htm.Google Scholar
  19. 19.
    D. de Vault, J. Am. Chem. Soc. 65, 532 (1943).CrossRefGoogle Scholar
  20. 20.
    A. T. James and A. J. P. Martin, Biochem. J. 50, 679 (1952).PubMedPubMedCentralGoogle Scholar
  21. 21.
    A. Kurganov, J. Chromatogr. A 1150, 100 (2007).CrossRefGoogle Scholar
  22. 22.
    L. S. Ettre and J. V. Hinshaw, Basic Relationships of Gas Chromatography (Advanstar, Cleveland, USA, 1993).Google Scholar
  23. 23.
    L. M. Blumberg, J. Chomatogr. 1491, 159 (2017).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • V. E. Shiryaeva
    • 1
  • T. P. Popova
    • 1
  • A. Yu. Kanat’eva
    • 1
  • A. A. Korolev
    • 1
  • A. A. Kurganov
    • 1
    Email author
  1. 1.Topchiev Institute of Petrochemical Synthesis, Russian Academy of SciencesMoscowRussia

Personalised recommendations