Russian Journal of Physical Chemistry A

, Volume 93, Issue 11, pp 2269–2274 | Cite as

Nano-ZnO Sand Flowers and Rods: Hydrothermal Synthesis and Optical Properties

  • L. Ben Saad
  • L. Soltane
  • F. SediriEmail author


Nano-ZnO sand flowers and rods were prepared by hydrothermal process using the zinc sulfate (ZnSO4 · 7H2O) as inorganic precursor and hydroquinone (OH–C6H4–OH) or 4-aminophynol (H2N–C6H4–OH) as structure directing agents. The structural and morphology properties of the nano-ZnO were investigated by X-ray diffraction (XRD) and scanning electron microscopy (SEM). XRD and SEM study demonstrated the existence of hexagonal wurtzite structure of ZnO and high degree of crystallinity with crystallite size of 10 to 12 nm with different morphologies. The optical properties of as-synthesized nano-ZnO were also studied. The result of this investigation showed that the band gap for ZnO nanorods and sand flowers have a value which amounted to 3.2 and 3.3 eV, respectively.


hydrothermal synthesis nano-ZnO optical properties 



We thank Mr. Tarek Fezai who linguistically revised and edited the whole paper.


  1. 1.
    H. Gleiter, Acta Mater. 48, 1 (2000).CrossRefGoogle Scholar
  2. 2.
    L. P. Xu, Y. L. Hu, C. Pelligra, C. H. Chen, L. Jin, H. Huang, S. Sithambaram, M. Aindow, R. Joesten, and S. L. Suib, Chem. Mater. 21, 2875 (2009).CrossRefGoogle Scholar
  3. 3.
    B. Wiley, Y. Sun, and Y. Xia, Acc. Chem. Res. 40, 1067 (2007).CrossRefGoogle Scholar
  4. 4.
    Y. Xiong and Y. Xia, Adv. Mater. 19, 3385 (2007).CrossRefGoogle Scholar
  5. 5.
    J. Zhang, H. Liu, Z. Wang, N. Ming, Z. Li, and A. S. Biris, Adv. Funct. Mater. 17, 3897 (2007).CrossRefGoogle Scholar
  6. 6.
    I. Lisiecki, J. Phys. Chem. B 109, 12231 (2005).CrossRefGoogle Scholar
  7. 7.
    J. Dai, C. X. Xu, Z. L. Shi, R. Ding, J. Y. Guo, Z. H. Li, B. X. Gu, and P. Wu, Opt. Mater. 33, 288 (2011).CrossRefGoogle Scholar
  8. 8.
    B. J. Jin, S. Im, and S. Y. Lee, Thin Solid Films 366, 107 (2000).CrossRefGoogle Scholar
  9. 9.
    R. Sreeja, J. Jobina, P. M. Aneesh, and M. K. Jayaraj, Opt. Commun. 283, 2908 (2010).CrossRefGoogle Scholar
  10. 10.
    K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant, J. A. Voigt, and B. E. Gnade, J. Appl. Phys. 79, 7983 (1996).CrossRefGoogle Scholar
  11. 11.
    L. E. Greene, M. Law, J. Goldberger, F. Kim, J. C. Johnson, Y. Zhang, R. J. Saykally, and P. Yang, Angew. Chem., Int. Ed. 42, 3031 (2003).CrossRefGoogle Scholar
  12. 12.
    Y. W. Heo, D. P. Norton, and S. J. Pearton, J. Appl. Phys. 98, 1 (2005).CrossRefGoogle Scholar
  13. 13.
    S. A. Studenikin, N. Golego, and M. Cocivera, J. Appl. Phys. 84, 2287 (1998).CrossRefGoogle Scholar
  14. 14.
    X. Zhao, F. Lou, M. Li, X. Lou, Z. Li, and J. Zhou, Ceram. Int. 40, 5507 (2014).CrossRefGoogle Scholar
  15. 15.
    D. Polsongkrama, P. Chamninok, S. Pukird, L. Chow, O. Lupan, G. Chai, H. Khallaf, S. Park, and A. Schulte, Phys. B 403, 3713 (2008).CrossRefGoogle Scholar
  16. 16.
    H. Y. Sun, Y. L. Yu, J. Luo, M. Ahmad, and J. Zhu, Cryst. Eng. Commun. 14, 8626 (2012).CrossRefGoogle Scholar
  17. 17.
    A. Moulahi and F. Sediri, Ceram. Int. 40, 943 (2014).CrossRefGoogle Scholar
  18. 18.
    A. Moulahi and F. Sediri, Optics 127, 7586 (2016).Google Scholar
  19. 19.
    R. X. Shi, P. Yang, J. R. Wang, A. Y. Zhang, Y. N. Zhu, Y. Q. Cao, and Q. Ma, Cryst. Eng. Commun. 14, 5996 (2012).CrossRefGoogle Scholar
  20. 20.
    M. Ahmad, Y. Y. Shi, A. Nisar, H. Y. Sun, W. C. Shen, M. Weie, and J. Zhu, J. Mater. Chem. 21, 7723 (2011).CrossRefGoogle Scholar
  21. 21.
    M. Movahedi, E. Kowsari, A. R. Mahjoub, and I. Yavari, Mater. Lett. 62, 3856 (2008).CrossRefGoogle Scholar
  22. 22.
    L. Sun, R. Shao, Z. D. Chen, L. Q. Tang, Y. Dai, and J. F. Ding, Appl. Surf. Sci. 258, 5455 (2012).CrossRefGoogle Scholar
  23. 23.
    O. Yamamoto, M. Komatsu, J. Sawa, and Z. E. Nakagawa, J. Mater. Sci. Mater. Med. 15, 847 (2004).CrossRefGoogle Scholar
  24. 24.
    M. Khalid, M. Ziese, A. Setzer, P. Esquinazi, M. Lorenz, H. Hochmuth, M. Grundmann, D. Spemann, T. Butz, G. Brauer, W. Anwand, G. Fischer, W. A. Adeagbo, W. Hergert, and A. Ernst, Phys. Rev. B 80, 035331 (2009).CrossRefGoogle Scholar
  25. 25.
    S. Xu and Z. Lin Wang, Nano Res. 4, 1013 (2011).CrossRefGoogle Scholar
  26. 26.
    Y. Lv, Z. Zhang, J. Yan, W. Zhao, C. Zhai, and J. Liu, J. Alloys Compd. 718, 161 (2017).CrossRefGoogle Scholar
  27. 27.
    R. Wahab, S. G. Ansari, Y. S. Kim, M. Song, and H.‑S. Shin, Appl. Surf. Sci. 255, 4891 (2009).CrossRefGoogle Scholar
  28. 28.
    L. N. Protasova, E. V. Rebrov, K. L. Choy, S. Y. Pung, V. Engels, M. Cabaj, A. E. H. Wheatley, and J. C. Schouten, Catal. Sci. Technol. 1, 768 (2011).CrossRefGoogle Scholar
  29. 29.
    H. S. Desarkar, P. Kumbhakar, and A. K. Mitra, Laser Phys. Lett. 10, 055903 (2013).CrossRefGoogle Scholar
  30. 30.
    L. Wang, S. Z. Xu, H. J. Li, L. X. Chang, S. Zhi, M. H. Zeng, L. N. Wang, and Y. N. Huang, J. Solid State Chem. 184, 720 (2011).CrossRefGoogle Scholar
  31. 31.
    S. W. Kim, S. Fujita, and F. Fujita, Appl. Phys. Lett. 81, 5036 (2002).CrossRefGoogle Scholar
  32. 32.
    K. W. Wong, M. R. Field, J. Z. Ou, K. Latham, M. J. Spencer, I. Yarovsky, and K. Kalantar-Zadeh, Nanotechnology 23, 015705 (2012).CrossRefGoogle Scholar
  33. 33.
    G. B. Sun, M. H. Cao, Y. H. Wang, C. W. Hu, Y. C. Liu, L. Ren, and Z. F. Pu, Mater. Lett. 60, 2777 (2006).CrossRefGoogle Scholar
  34. 34.
    Z. F. Zhu, D. Yang, and H. Liu, Adv. Powder Technol. 22, 493 (2011).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Unité de Recherche de Matériaux et Environnement (UR15ES01), IPEIT, Université de Tunis, 2 Rue Jawaher Lel NahruMontfleuryTunisia
  2. 2.Faculté des Sciences de Tunis, Université de Tunis El ManarEl Manar TunisTunisia

Personalised recommendations