Advertisement

Russian Journal of Physical Chemistry A

, Volume 93, Issue 11, pp 2323–2325 | Cite as

Electrochemical Synthesis of Polyphenylenes in Room-Temperature Ionic Liquid Butylpyridinium Chloride–AlCl3

  • O. K. Lebedeva
  • D. Yu. Kultin
  • L. M. KustovEmail author
SHORT COMMUNICATIONS
  • 32 Downloads

Abstract

Electrochemical oxidation of benzene in room-temperature ionic liquids N‑butylpyridinium chloride–AlCl3 under controlling the potential on platinum and glassy carbon composite electrodes is studied. Linear polymers with degree of polymerization of 8–120 are obtained. It is shown that the degree of polymerization increases with increasing the anode potential.

Keywords:

electrochemical oxidation ionic liquids degree of polymerization, polyphenylene 

Notes

ACKNOWLEDGMENTS

This research was supported by the Russian Foundation for Basic Research (project no. 19-03-00808).

REFERENCES

  1. 1.
    M. Armand, F. Endres, D. R. MacFarlane, H. Ohno, and B. Scrosati, Nat. Mater. 8, 621 (2009).CrossRefGoogle Scholar
  2. 2.
    A. Lewandowski and A. Swiderska-Mocek, J. Power Sources 194, 601 (2009).CrossRefGoogle Scholar
  3. 3.
    P. Hapiot and C. Lagrost, Chem. Rev. 108, 2238 (2008).CrossRefGoogle Scholar
  4. 4.
    O. Lebedeva, D. Kultin, N. Root, F. Guseynov, S. Dunaev, F. de Melo, and L. Kustov, Synth. Met. 221, 268 (2016).CrossRefGoogle Scholar
  5. 5.
    J. Lua, F. Yana, and J. Texter, Prog. Polym. Sci. 34, 431 (2009).CrossRefGoogle Scholar
  6. 6.
    O. Schneider, A. Bund, A. Ispas, N. Borissenko, S. Zein El Abedin, and F. Endres, J. Phys. Chem. B 109, 7159 (2005).CrossRefGoogle Scholar
  7. 7.
    A. Pron and P. Rannou, Prog. Polym. Sci. 27, 135 (2002).CrossRefGoogle Scholar
  8. 8.
    D. C. Trivedi, J. Chem. Soc., Chem. Commun. 0, 544 (1989).CrossRefGoogle Scholar
  9. 9.
    L. M. Goldenberg, A. E. Pelekh, V. I. Krinichnyi, O. S. Roshchupkina, A. F. Zueva, R. N. Lyubovskaya, and O. N. Efimov, Synth. Met. 36, 217 (1990).CrossRefGoogle Scholar
  10. 10.
    V. M. Kobryanskii and S. A. Arnautov, Macromol. Chem. Phys. 193, 455 (1992).CrossRefGoogle Scholar
  11. 11.
    L. M. Goldenberg and R. A. Osteryoung, Synth. Met. 64, 63 (1994).CrossRefGoogle Scholar
  12. 12.
    J. Robinson and R. A. Osteryoung, J. Am. Chem. Soc. 101, 323 (1979).CrossRefGoogle Scholar
  13. 13.
    S. A. Arnautov, Synth. Met. 84, 295 (1997).CrossRefGoogle Scholar
  14. 14.
    L. M. Goldenberg, A. E. Pelekh, V. I. Krinichnyi, O. S. Roshchupkina, A. F. Zueva, R. N. Lyubovskaya, and O. N. Efimov, Synth. Met. 43, 3071 (1991).CrossRefGoogle Scholar
  15. 15.
    T. Carstens, S. Zein El Abedin, and F. Endres, ChemPhysChem. 9, 439 (2008).CrossRefGoogle Scholar
  16. 16.
    S. Aeiyach, P. Soubiran, P. C. Lacaze, G. Froyer, and Y. Pelous, Synth. Met. 32, 103 (1989).CrossRefGoogle Scholar
  17. 17.
    K. Sasaki, M. Kaya, A. Kutani, and A. Kunai, J. Electroanal. Chem. 215, 401 (1986).CrossRefGoogle Scholar
  18. 18.
    G. Zotti, S. Cattarin, and M. Comisso, J. Electroanal. Chem. 239, 387 (1988).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • O. K. Lebedeva
    • 1
  • D. Yu. Kultin
    • 1
  • L. M. Kustov
    • 1
    • 2
    • 3
    Email author
  1. 1.Department of Chemistry, Lomonosov Moscow State UniversityMoscowRussia
  2. 2.Zelinsky Institute of Organic Chemistry, Russian Academy of SciencesMoscowRussia
  3. 3.National University of Science and Technology MISiSMoscowRussia

Personalised recommendations