Advertisement

Russian Journal of Physical Chemistry A

, Volume 93, Issue 11, pp 2140–2145 | Cite as

Ethane Oxidation in the Presence of Copper-Containing Zirconia Modified with Acid Additives

  • P. A. Donyush
  • A. L. KustovEmail author
  • V. D. Nissenbaum
  • A. L. Tarasov
  • L. M. Kustov
CHEMICAL KINETICS AND CATALYSIS
  • 7 Downloads

Abstract

The complete oxidation of ethane in the presence of catalysts containing 1, 3, and 5 wt % CuO deposited on four supports (zirconia, sulfated zirconia, tungstated zirconia, and La2O3-stabilized zirconia) is studied. The supports and the catalysts are characterized via BET, XRD, and thermal analysis. It is shown that 100% conversion of ethane is achieved even at a temperature of 300°C. It is found that the temperature of 100% conversion falls upon an increase in the copper content; the lowest temperature is obtained for catalysts based on unmodified zirconia. With respect to catalytic activity, the samples with the highest copper content are in the order 5%Cu/ZrO2 > 5%Cu/5%La2O3/ZrO2 > 5%Cu/15%WO3/ZrO2 > 5%Cu/5%SO4/ZrO2. The temperatures of 100% ethane conversion for these catalysts are 305, 385, 410, and 419°C, respectively.

Keywords:

ethane oxidation alkane oxidation zirconia sulfated zirconia tungstated zirconia copper oxide 

Notes

REFERENCES

  1. 1.
    F. J. Janssen and R. A. Santen, Environmental Catalysis (Imperial College Press, London, 1999).CrossRefGoogle Scholar
  2. 2.
    L. Matejova, P. Topka, K. Jiratova, and O. Solcova, Appl. Catal. A: Gen. 443, 40 (2012).CrossRefGoogle Scholar
  3. 3.
    M. S. Kamal, S. A. Razzak, and M. M. Hossain, Atmos. Environ. 140, 117 (2016).CrossRefGoogle Scholar
  4. 4.
    L. M. Kustov, K. M. Skupov, S. S. Goryashchenko, and O. V. Masloboishchikova, Zh. Fiz. Khim. 88, 891 (2014).Google Scholar
  5. 5.
    A. V. Kucherov, O. P. Tkachenko, O. A. Kirichenko, et al., Top. Catal. 52, 351 (2009).CrossRefGoogle Scholar
  6. 6.
    E. V. Makshina, L. V. Borovskikh, A. L. Kustov, G. N. Mazo, and B. V. Romanovskii, Russ. J. Phys. Chem. A 79, 191 (2005).Google Scholar
  7. 7.
    A. L. Kustov, O. P. Tkachenko, L. M. Kustov, and B. V. Romanovsky, Environ. Int. 37, 1053 (2011).CrossRefGoogle Scholar
  8. 8.
    N. A. Davshan, A. L. Kustov, O. P. Tkachenko, et al., ChemCatChem 6, 1990 (2014).CrossRefGoogle Scholar
  9. 9.
    T. P. Otroshchenko, A. O. Turakulova, V. A. Voblikova, L. V. Sabitova, S. V. Kutsev, and V. V. Lunin, Russ. J. Phys. Chem. A 87, 1804 (2013).CrossRefGoogle Scholar
  10. 10.
    Yu. P. Semushina, S. I. Pechenyuk, L. F. Kuz’mich, and A. I. Knyazeva, Russ. J. Phys. Chem. A 91, 26 (2017).CrossRefGoogle Scholar
  11. 11.
    I. Yu. Kaplin, E. S. Lokteva, E. V. Golubina, K. I. Maslakov, S. A. Chernyak, A. V. Levanov, N. E. Strokova, and V. V. Lunin, Russ. J. Phys. Chem. A 90, 2157 (2016).CrossRefGoogle Scholar
  12. 12.
    K. I. Slovetskaya, A. A. Greish, M. P. Vorob’eva, and L. M. Kustov, Russ. Chem. Bull. Int. Ed. 50, 1589 (2001).CrossRefGoogle Scholar
  13. 13.
    A. N. Pushkin, O. K. Gulish, D. A. Koshcheeva, and M. S. Shebanov, Russ. J. Phys. Chem. A 87, 23 (2013).CrossRefGoogle Scholar
  14. 14.
    Y. Fang and Y. Guo, Chin. J. Catal. 39, 566 (2018).CrossRefGoogle Scholar
  15. 15.
    A. Bialas, T. Kondratovicz, M. Drozdec, and P. Kustrowski, Catal. Today 257, 144 (2015).CrossRefGoogle Scholar
  16. 16.
    G. Aguila, F. Gracia, J. Cortes, and P. Araya, Appl. Catal. B: Environ. 77, 325 (2008).CrossRefGoogle Scholar
  17. 17.
    A. V. Ivanov and L. M. Kustov, Ross. Khim. Zh. 2, 21 (2000).Google Scholar
  18. 18.
    K. Arata, Adv. Catal. 37, 165 (1990).Google Scholar
  19. 19.
    A. V. Ivanov, E. G. Khelkovskaya-Sergeeva, and T. V. Vasina, Russ. Chem. Bull. 48, 1266 (1999).CrossRefGoogle Scholar
  20. 20.
    M. Scheifauer, R. Grasselli, and H. Knozinger, Langmuir 14, 30 (1998).Google Scholar
  21. 21.
    A. L. Klyachko-Gurvich, Izv. Akad. Nauk SSSR, Otd. Khim. Nauk, No. 10, 1884 (1961).Google Scholar
  22. 22.
    A. Clearfield, G. P. D. Serrette, and A. H. Khazi-Syed, Catal. Today 20, 295 (1994).CrossRefGoogle Scholar
  23. 23.
    O. Kirichenko, G. Kapustin, V. Nissenbaum, et al., J. Therm. Anal. Calorim. 134, 233 (2018).CrossRefGoogle Scholar
  24. 24.
    B. Reddy and M. Patil, Chem. Rev. 109, 2185 (2009).CrossRefGoogle Scholar
  25. 25.
    L. P. Kolmakova, O. N. Kovtun, and N. N. Dovzhenko, J. Siber. Fed. Univ., Eng. Technol. 3, 293 (2010).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • P. A. Donyush
    • 1
  • A. L. Kustov
    • 1
    • 2
    Email author
  • V. D. Nissenbaum
    • 2
  • A. L. Tarasov
    • 2
  • L. M. Kustov
    • 1
    • 2
  1. 1.Department of Chemistry, Moscow State UniversityMoscowRussia
  2. 2.Zelinsky Institute of Organic Chemistry, Russian Academy of SciencesMoscowRussia

Personalised recommendations