Advertisement

Russian Journal of Physical Chemistry A

, Volume 93, Issue 11, pp 2117–2122 | Cite as

Water–Zinc (Copper) Methanesulfonate Systems: Thermodynamic Properties and Phase Equilibria

  • E. V. BelovaEmail author
  • D. I. Finkelshteyn
  • A. I. Maksimov
  • I. A. UspenskayaEmail author
ON THE 90th ANNIVERSARY OF THE DEPARTMENT OF CHEMISTRY OF THE LOMONOSOV MOSCOW STATE UNIVERSITY
  • 8 Downloads

Abstract

Vapor pressure was determined by static method at 298.15 K, and the solvent activity values were calculated for the Zn(CH3SO3)2–H2O and Cu(CH3SO3)2–H2O systems. Parameters of the Pitzer–Simonson–Clegg model were obtained from data on the vapor–liquid (VLE) and solid–liquid (SLE) equilibria. Stability parameters of hydrates Zn(CH3SO3)2 · 12H2O, Zn(CH3SO3)2 · 4H2O and Cu(CH3SO3)2 · 4H2O were estimated. Phase diagram fragments were calculated.

Keywords:

zinc methanesulfonate copper methanesulfonate static vapor pressure method water activity Pitzer–Simonson–Clegg model 

Notes

ACKNOWLEDGMENTS

The authors are grateful to Alexei L. Voskov for providing the MATLAB script to calculate activity coefficients and excess Gibbs energy using the Pitzer–Simonson–Clegg model.

FUNDING

This work was performed as part of the program “Chemical Thermodynamics” (АААА-А16-116061750195-2). It was supported in part by the Russian Foundation for Basic Research, youth project 16-33-00958.

REFERENCES

  1. 1.
    M. D. Gernon, M. Wu, T. Buszta, and P. Janney, Green Chem. 1, 127 (1999).CrossRefGoogle Scholar
  2. 2.
    R. Bentley and T. G. Chasteen, Chemosphere 55, 291 (2004).CrossRefGoogle Scholar
  3. 3.
    M. Hasan and J. F. Rohan, J. Electrochem. Soc. 157, 278 (2010).CrossRefGoogle Scholar
  4. 4.
    H. Jiang, React. Kinet. Catal. Lett. 84, 223 (2005).CrossRefGoogle Scholar
  5. 5.
    M. Wang, Z.-C. Wang, Z.-L. Sun, and H. Jiang, Transition Met. Chem. 30, 792 (2005).Google Scholar
  6. 6.
    M. Wang, H. Gong, H. Jiang, and Z. Wang, Synth. Commun. 36, 1953 (2006).CrossRefGoogle Scholar
  7. 7.
    P. K. Leung, C. Ponce-De-Leon, C. T. J. Low, et al., J. Power Sources 196, 5174 (2011).CrossRefGoogle Scholar
  8. 8.
    E. V. Belova, V. S. Krasnov, A. B. Ilyukhin, and I. A. Uspenskaya, Thermochim. Acta 668, 46 (2018).CrossRefGoogle Scholar
  9. 9.
    N. A. Kovalenko, E. A. Pustovgar, and I. A. Uspenskaya, J. Chem. Eng. Data 58, 159 (2012).CrossRefGoogle Scholar
  10. 10.
    S. L. Clegg, K. S. Pitzer, and P. Brimblecombe, J. Phys. Chem. 96, 9470 (1992).CrossRefGoogle Scholar
  11. 11.
    R. N. Goldberg, J. Phys. Chem. Ref. Data 10, 1 (1981).CrossRefGoogle Scholar
  12. 12.
    R. H. Stokes and B. J. Levien, J. Am. Chem. Soc. 68, 333 (1946).CrossRefGoogle Scholar
  13. 13.
    R. N. Goldberg, J. Phys. Chem. Ref. Data 8, 1005 (1979).CrossRefGoogle Scholar
  14. 14.
    J. G. Albright, P. Rizzo, and J. A. Rard, J. Chem. Thermodyn. 30, 327 (1998).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Department of Chemistry, Moscow State UniversityMoscowRussia

Personalised recommendations