Advertisement

Russian Journal of Physical Chemistry A

, Volume 93, Issue 11, pp 2314–2322 | Cite as

Proof of the Absence of transcis Photoisomerization of Methyl Orange Rydimers in an Aqueous Medium and Inclusion Complexes

  • Yu. A. MikheevEmail author
  • Yu. A. Ershov
PHOTOCHEMISTRY AND MAGNETOCHEMISTRY
  • 12 Downloads

Abstract

Data are presented on the ultrafast laser probing of photoinduced states of methyl orange in an aqueous medium and in complexes with cyclodextrins, along with trans-aminoazobenzene in ethanol, obtained using an ultrafast transient lens (UTL) and transient absorption spectroscopy (TAS). The analysis is based on the concept of the rydimeric structure of azo dyes in the ground state. It is shown that the discrepancy between the UTL and TAS signals of methyl orange rydimers, and the UTL and TAS signals of aminoazobenzene rydimers, is due to the inability of methyl orange rydimers to undergo transcis photoisomerization in an aqueous medium and in inclusion complexes, due to the dissociation of aminoazobenzene rydimers into monomers. In ethanol, an aminoazobenzene monomer with two phenylaminyl cations and Vis absorption in the wavelength range of 500–750 nm is converted to a cis-isomer. In contrast, the photodissociation of methyl orange rydimers into monomers does not result in the formation of cis-isomers. The reasons for this difference are the immobilization and limited mobility of methyl orange rydimers in aqua capsules and cyclodextrin nanocavities.

Keywords:

methyl orange aminoazobenzene rydimers photodissociation of rydimers transcis isomerization UTL and TA spectroscopy cyclodextrins inclusion compounds hydrophobic hydration aqua capsules 

Notes

REFERENCES

  1. 1.
    Yu. A. Mikheev, L. N. Guseva, and Yu. A. Ershov, Russ. J. Phys. Chem. A 91, 715 (2017).CrossRefGoogle Scholar
  2. 2.
    Yu. A. Mikheev, L. N. Guseva, and Yu. A. Ershov, Russ. J. Phys. Chem. A 91, 1896 (2017).CrossRefGoogle Scholar
  3. 3.
    Yu. A. Mikheev and Yu. A. Ershov, Russ. J. Phys. Chem. A 92, 286 (2018).CrossRefGoogle Scholar
  4. 4.
    Yu. A. Mikheev and Yu. A. Ershov, Russ. J. Phys. Chem. A 92, 1499 (2018).CrossRefGoogle Scholar
  5. 5.
    Yu. A. Mikheev and Yu. A. Ershov, Russ. J. Phys. Chem. A 92, 1911 (2018).CrossRefGoogle Scholar
  6. 6.
    Yu. A. Mikheev and Yu. A. Ershov, Russ. J. Phys. Chem. A 93, 369 (2019).CrossRefGoogle Scholar
  7. 7.
    Yu. A. Mikheev and Yu. A. Ershov, Russ. J. Phys. Chem. A 93, 1195 (2019).Google Scholar
  8. 8.
    Yu. A. Mikheev and Yu. A. Ershov, Russ. J. Phys. Chem. A 93, 1411 (2019).Google Scholar
  9. 9.
    Ya. Hirose, H. Yui, and Ts. Sawada, J. Phys. Chem. A 106, 3067 (2002).CrossRefGoogle Scholar
  10. 10.
    Ya. Hirose, H. Yui, M. Fujinami, and Ts. Sawada, Chem. Phys. Lett. 341. 29 (2001).CrossRefGoogle Scholar
  11. 11.
    M. Takei, H. Yui, Ya. Hirose, and Ts. Sawada, J. Phys. Chem. A 105, 11395 (2001).CrossRefGoogle Scholar
  12. 12.
    J. Szejtli, Chem. Rev. 98, 1743 (1998).CrossRefGoogle Scholar
  13. 13.
    Yu. A. Mikheev, L. N. Guseva, and Yu. A. Ershov, Russ. J. Phys. Chem. A 79, 489 (2005).Google Scholar
  14. 14.
    Yu. A. Mikheev, L. N. Guseva, E. Ya. Davydov, and Yu. A. Ershov, Russ. J. Phys. Chem. A 81, 1897 (2007).CrossRefGoogle Scholar
  15. 15.
    J. Simon and J.-J. Andre, in Molecular Semiconductors: Photoelectrical Properties and Solar Cells, Ed. by J. M. Lehn and C. W. Rees (Springer, Berlin, 1985).CrossRefGoogle Scholar
  16. 16.
    M. Terazima, J. Chem. Phys. 105, 6587 (1996).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Emanuel Institute of Biochemical Physics, Russian Academy of SciencesMoscowRussia
  2. 2.Bauman Moscow State Technical UniversityMoscowRussia

Personalised recommendations