Advertisement

Russian Journal of Physical Chemistry A

, Volume 93, Issue 8, pp 1577–1583 | Cite as

NiS2 Nanoparticles with Tunable Surface Area As Catalyst for Ethanol Oxidation

  • Yao Li
  • Wenjuan Shi
  • Yuning Qu
  • Tangming Dai
  • Juan Li
  • Yongnan Zhao
  • Jianguo YuEmail author
PHYSICAL CHEMISTRY OF NANOCLUSTERS AND NANOMATERIALS
  • 8 Downloads

Abstract

NiS2 is rationally and readily prepared via a simple and general hydrothermal synthetic route. The particle sizes of NiS2 species are tunable by adjusting the pH value of the hybrid solution. The optimized sample (NiS2-4) contains NiS2 nanoparticles of about 32.6 nm, and large surface area of 368.5 m2 g–1. The high surface area renders NiS2-4 an excellent electrocatalytic performance for ethanol oxidation. NiS2-4 electrode also exhibits a good long-term cycling stability. 93.3% of the initial current density is recovered by moving the NiS2-4 electrode into fresh 0.1 M NaOH solution with 0.5 M ethanol after 500 cycles. The excellent electrocatalytic properties of NiS2-4 for ethanol oxidation stems from the high surface areas.

Keywords:

NiS2 surface area mesopore electrochemical catalyst ethanol oxidation 

Notes

ACKNOWLEDGMENTS

This research was supported by Natural Science Foundations of Tianjin (nos. 15JCQNJC05700, 17JCTPJC47300, and 17JCQNJC06100), Natural Science Foundations of China (nos. 21271138 and 21703152), and the State Key Laboratory of Inorganic Synthesis and Preparative Chemistry of Jilin University (no. 2015−02).

REFERENCES

  1. 1.
    A. Lopez, E. Degrandi-Contraires, E. Canetta, C. Creton, J. L. Keddie, and J. M. Asua, Langmuir 27, 3878 (2011).CrossRefGoogle Scholar
  2. 2.
    X. Zhou, Y. Li, C. Fang, S. Li, Y. Cheng, W. Lei, and X. Meng, J. Mater. Sci. Technol. 31, 708 (2015).CrossRefGoogle Scholar
  3. 3.
    Y. Q. Zhang, M. M. Jia, H. Y. Gao, J. G. Yu, L. L. Wang, Y. S. Zou, F. M. Qin, and Y. N. Zhao, Electrochim. Acta 184, 32 (2015).CrossRefGoogle Scholar
  4. 4.
    T. F. Liu, Z. F. Guo, W. P. Li, Z. J. Pang, and Q. Z. Tong, Russ. J. Phys. Chem. A 91, 1005 (2017).CrossRefGoogle Scholar
  5. 5.
    Y. Qu, Y. Gao, L. Wang, J. Rao, and G. Yin, Chem. Eur. J. 22, 193 (2016).CrossRefGoogle Scholar
  6. 6.
    R. Rizo, D. Sebastián, M. J. Lázaro, and E. Pastor, Appl. Catal., B 200, 246 (2017).CrossRefGoogle Scholar
  7. 7.
    W. Shi, Q. Wang, F. Qin, J. Yu, M. Jia, H. Gao, Y. Zhang, Y. Zhao, and G. Li, Electrochim. Acta 232, 332 (2017).CrossRefGoogle Scholar
  8. 8.
    C. Tang, Z. Pu, Q. Liu, A. M. Asiri, and X. Sun, Electrochim. Acta 153, 508 (2015).CrossRefGoogle Scholar
  9. 9.
    X. Shang, W. Hu, G. Han, Z. Liu, B. Dong, Y. Liu, X. Li, Y. Chai, and C. Liu, Int. J. Hydrogen Energy 41, 13032 (2016)CrossRefGoogle Scholar
  10. 10.
    Y. A. Topolyuk, A. L. Maksimov, and Y. G. Kolyaqin, Russ. J. Phys. Chem. A 91, 205 (2017).CrossRefGoogle Scholar
  11. 11.
    X. F. Wang, G. A. Tai, Z. H. Wu, T. S. Hu, and R. Wang, J. Mater. Chem. A 5, 23471 (2017).CrossRefGoogle Scholar
  12. 12.
    V. Shokhen and D. Zitoun, Electrochim. Acta 257, 49 (2017).CrossRefGoogle Scholar
  13. 13.
    L. Wu, X. Xu, Y. Zhao, K. Zhang, Y. Sun, T. Wang, Y. Wang, W. Zhong, and Y. Du, Appl. Surf. Sci. 425, 470 (2017)CrossRefGoogle Scholar
  14. 14.
    L. Shen, L. Yu, X. Y. Yu, X. Zhang, and X. W. Lou, Angew. Chem. Int. Ed. 54, 1868 (2015).CrossRefGoogle Scholar
  15. 15.
    J. Wang, S. Wang, Z. Huang, and Y. Yu, J. Mater. Chem. A 2, 17595 (2014).CrossRefGoogle Scholar
  16. 16.
    Y. Feng, H. Zhang, Y. Guan, Y. Mu, and Y. Wang, J. Power Sources 348, 246 (2017).CrossRefGoogle Scholar
  17. 17.
    W. Wang, L. Li, S. Tan, K. Wu, G. Zhu, Y. Liu, Y. Xu, and Y. Yang, Fuel 179, 1(2016).CrossRefGoogle Scholar
  18. 18.
    C. Wei, C. Cheng, Y. Cheng, Y. Wang, Y. Xu, W. Du, and H. Pang, Dalton Trans. 44, 17278 (2015).CrossRefGoogle Scholar
  19. 19.
    D. Zhang, X. Zhou, K. Ye, Y. Li, C. Song, K. Cheng, D. Cao, G. Wang, and Q. Li, Electrochim. Acta 173, 209 (2015).CrossRefGoogle Scholar
  20. 20.
    B. Fang, M. Kim, S. Q. Fan, S. Q. Fan, J. H. Kim, D. P. Wilkinson, J. Ko, and J. S. Yu, J. Mater. Chem. A 21, 8742 (2011).CrossRefGoogle Scholar
  21. 21.
    Y. Zhang, M. Jia, J. Fan, L. Wang, J. Yu, Y. Zou, and Y. Zhao, J. Solid State Electrochem. 20, 733 (2016).CrossRefGoogle Scholar
  22. 22.
    W. Shi, H. Gao, J. Yu, M. Jia, T. Dai, Y. Zhao, J. Xu, and G. Li, Electrochim. Acta 220, 486 (2016).CrossRefGoogle Scholar
  23. 23.
    T. Tian, L. Huang, L. Ai, and J. Jiang, J. Mater. Chem. A 5, 20985 (2017).CrossRefGoogle Scholar
  24. 24.
    Z. Wan, C. Jia, and Y. Wang, Nanoscale 7, 29 (2015).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • Yao Li
    • 1
  • Wenjuan Shi
    • 2
  • Yuning Qu
    • 1
  • Tangming Dai
    • 1
  • Juan Li
    • 2
  • Yongnan Zhao
    • 2
  • Jianguo Yu
    • 1
    Email author
  1. 1.College of Environment and Chemical Engineering and State Key Laboratory of Hollow-Fiber Membrane Materials and Membrane Processes, Tianjin Polytechnic UniversityTianjinP. R. China
  2. 2.School of Materials Science and Engineering, Tianjin Polytechnic UniversityTianjinP. R. China

Personalised recommendations