Russian Journal of Physical Chemistry A

, Volume 93, Issue 8, pp 1513–1518 | Cite as

Molecular Dynamics Simulation of the Solvated Environment of 18-Crown-6 Ether in Mixed Ethanol–Dimethylsulfoxide

  • M. A. VolkovaEmail author
  • I. A. Kuz’mina
  • E. G. Odintsova
  • V. A. Sharnin


The number of ethanol molecules (EtOH) in the solvate environment of 18-crown-6 (18C6) ether is determined by molecular dynamics, depending on the concentration of dimethylsulfoxide (DMSO) in the EtOH–DMSO binary mixture (χDMSO = 0.0–0.8 mole fraction). The probabilities of the formation of hydrogen bonds between molecules of 18C6–EtOH, DMSO–EtOH, and EtOH–EtOH are calculated along with their average numbers and lifetimes. It is assumed that macrocycle re-solvation is virtually complete at χDMSO ~ 0.6 mole fraction. It is established that the ability of EtOH molecules to form hydrogen bonds with 18C6, DMSO, and with each other declines as the concentration of DMSO in the binary mixture rises. It is shown that the lifetimes of the EtOH–DMSO hydrogen bonds are longer than those for 18C6–EtOH and EtOH–EtOH.


molecular dynamics modeling solvation coordination number hydrogen bond 18-crown-6 ether ethanol-dimethylsulfoxide solvents 



The authors thank senior researcher V.E. Petrenko (G.A. Krestov Institute of Solution Chemistry, RAS) for her helpful advice in performing this study.


  1. 1.
    C. J. Pedersen, J. Am. Chem. Soc. 89, 7017 (1967). CrossRefGoogle Scholar
  2. 2.
    M. Hiraoka, Crown Compounds: Their Characteristics and Applications (Kodansha, Tokyo, 1982).Google Scholar
  3. 3.
    J. W. Steed and J. L. Atwood, Supramolecular Chemistry (Wiley, New York, 2000; Akademkniga, Moscow, 2007).Google Scholar
  4. 4.
    F. Davis and S. Higson, Macrocycles: Construction, Chemistry, and Nanotechnology Applications (Wiley, Chichester, 2011).CrossRefGoogle Scholar
  5. 5.
    T. R. Usacheva, V. A. Sharnin, and E. Matteoli, in Glycine: Biosynthesis, Physiological Functions, and Commercial Uses, Ed. by W. Vojak (Nova Science, New York, 2013), Chap. 1, p. 1.Google Scholar
  6. 6.
    T. R. Usacheva, V. A. Sharnin, and E. Matteoli, in Advances in Chemistry Research, Ed. by J. C. Taylor (Nova Science, New York, 2014), Vol. 22, Chap. 5, p. 127.Google Scholar
  7. 7.
    I. A. Kuz’mina, T. R. Usacheva, M. A. Volkova, et al., in Advances in Chemistry Research, Ed. by J. C. Taylor (Nova Science, New York, 2016), Vol. 33, Chap. 7, p. 205.Google Scholar
  8. 8.
    A. Yu. Tsivadze, V. I. Zhilov, and S. V. Demin, Russ. J. Coord. Chem. 22, 229 (1996). Google Scholar
  9. 9.
    D. A. Richens, D. Simpson, S. Peterson, et al., J. Chromatogr., A 1016, 155 (2003). Scholar
  10. 10.
    G. W. Gokel, W. M. Leevy, and M. E. Weber, Chem. Rev. 104, 2723 (2004). CrossRefGoogle Scholar
  11. 11.
    R. M. Z. Kakhki and G. Rounaghi, J. Chem. Eng. Data 56, 3169 (2011). CrossRefGoogle Scholar
  12. 12.
    G. A. Krestov, Zh. Vses. Khim. Ob-va im. D. I. Mendeleeva 28 (6), 70 (1983) [in Russian].Google Scholar
  13. 13.
    Yu. K. Tovbin, Molecular Dynamics Method in Physical Chemistry (Nauka, Moscow, 1996) [in Russian].Google Scholar
  14. 14.
    A. S. Virk, T. Stait-Gardner, S. A. Willis, et al., Front. Phys. 3 (2015).
  15. 15.
    S. Horowitz and R. C. Trievel, J. Biol. Chem. 287, 41576 (2012). CrossRefGoogle Scholar
  16. 16.
    Yu. A. Fialkov, Not Only in Water (Khimiya, Leningrad, 1989) [in Russian].Google Scholar
  17. 17.
    V. P. Barannikov, S. S. Guseinov, and A. I. V’yugin, Russ. J. Coord. Chem. 28, 163 (2002) [in Russian].CrossRefGoogle Scholar
  18. 18.
    R. Fuchs, G. E. McCravy, and J. J. Bloomfield, J. Am. Chem. Soc. 83, 4281 (1961). CrossRefGoogle Scholar
  19. 19.
    G. J. Safford, P. C. Schaffer, P. S. Leung, et al., J. Chem. Phys. 50, 2140 (1969). CrossRefGoogle Scholar
  20. 20.
    R. L. Amey, J. Phys. Chem. 72, 3358 (1968). CrossRefGoogle Scholar
  21. 21.
    E. S. Verstakov, P. S. Yastremskii, Yu. M. Kessler, et al., J. Struct. Chem. 21, 636 (1980).Google Scholar
  22. 22.
    I. D. Gulyakin, N. A. Oborotova, and V. M. Pechennikov, Khim.-Farm. Zh. 48 (3), 46 (2014).Google Scholar
  23. 23.
    M. D. Tsitsuashvili, S. I. Pavlova, D. Z. Albegova, and I. G. Kozlov, Int. J. Immunorehabil. 12 (2), 105a (2010).Google Scholar
  24. 24.
    E. Apol, R. Apostolov, and H. J. C. Berendsen, GROMACS-4.5.4 (Sweden, 2001–2010). Scholar
  25. 25.
    W. L. Jorgensen, D. S. Maxwell, and J. Tirado-Rives, J. Am. Chem. Soc. 118, 11225 (1996).CrossRefGoogle Scholar
  26. 26.
    M. C. Zwier, J. W. Kaus, and L. T. Chong, J. Chem. Theory Comput. 7, 1189 (2011). CrossRefGoogle Scholar
  27. 27.
    I. A. Borin and M. S. Skaf, J. Chem. Phys. 110, 6412 (1999). CrossRefGoogle Scholar
  28. 28.
    G. A. Krestov, V. N. Afanas’ev, and L. S. Efremova, Physicochemical Properties of Binary Solvents (Khimiya, Leningrad, 1988) [in Russian].Google Scholar
  29. 29.
    M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids (Clarendon, London, 1987).Google Scholar
  30. 30.
    S. Nose, Mol. Phys. 52, 255 (1984).CrossRefGoogle Scholar
  31. 31.
    W. G. Hoover, Phys. Rev. A 31, 1695 (1985).CrossRefGoogle Scholar
  32. 32.
    T. Darden, D. York, and L. Pedersen, J. Chem. Phys. 98, 10089 (1993).CrossRefGoogle Scholar
  33. 33.
    U. Essmann, L. Perera, M. L. Berkowitz, et al., J. Chem. Phys. 103, 8577 (1995).CrossRefGoogle Scholar
  34. 34.
    B. Hess, H. Bekker, H. J. C. Berendsen, and J. G. E. M. Fraaije, J. Comput. Chem. 18, 1463 (1997).CrossRefGoogle Scholar
  35. 35.
    M. J. Frisch, G. W. Trucks, H. B. Schlegel, et al., Gaussian 03, Revision B.03 (Gaussian, Inc., Pittsburgh, PA, 2003).Google Scholar
  36. 36.
    R. H. Hertwig and W. Koch, J. Chem. Phys. Lett 268, 345 (1997).CrossRefGoogle Scholar
  37. 37.
    W. J. Hehre, K. Ditchfield, and J. A. Pople, J. Chem. Phys. 56, 2257 (1972).CrossRefGoogle Scholar
  38. 38.
    J. D. Dill and J. A. Pople, J. Chem. Phys. 62, 2921 (1975).CrossRefGoogle Scholar
  39. 39.
    T. H. Dunning, J. Chem. Phys. 90, 1007 (1989).CrossRefGoogle Scholar
  40. 40.
    E. D. Glendening, A. E. Reed, J. E. Carpenter, et al., QCPE Bull. 10, 58 (1990).Google Scholar
  41. 41.
    E. Arunan, G. R. Desiraju, R. A. Klein, J. Sadlej, et al., Pure Appl. Chem. 83, 1619 (2011). CrossRefGoogle Scholar
  42. 42.
    E. Arunan, G. R. Desiraju, R. A. Klein, J. Sadlej, et al., Pure Appl. Chem. 83, 1637 (2011). Scholar
  43. 43.
    E. Guardia, J. Marti, J. A. Padro, et al., J. Mol. Liq. 96–97, 3 (2002).CrossRefGoogle Scholar
  44. 44.
    M. Haughney, M. Ferrario, and I. R. McDonald, J. Phys. Chem. 91, 4934 (1987).CrossRefGoogle Scholar
  45. 45.
    A. F. Skryshevskii, Structure Analysis of Liquids and Amorphous Bodies (Vysshaya Shkola, Moscow, 1980) [in Russian].Google Scholar
  46. 46.
    G. G. Malenkov and D. L. Tytik, in Molecular Dynamics Method in Physical Chemistry, Ed. by Yu. K. Tovbin (Nauka, Moscow, 1996) [in Russian].Google Scholar
  47. 47.
    G. G. Malenkov, M. M. Frank-Kamenetskii, and A. G. Grivtsov, J. Struct. Chem. 28, 230 (1987).Google Scholar
  48. 48.
    V. V. Voloshin, G. G. Malenkov, and Yu. I. Naberukhin, J. Struct. Chem. 48, 1066 (2007).CrossRefGoogle Scholar
  49. 49.
    D. C. Rapaport, Mol. Phys. 50, 1151 (1983).CrossRefGoogle Scholar
  50. 50.
    M. L. Antipova and V. E. Petrenko, Russ. J. Phys. Chem. A 87, 1170 (2013).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • M. A. Volkova
    • 1
    Email author
  • I. A. Kuz’mina
    • 1
  • E. G. Odintsova
    • 2
  • V. A. Sharnin
    • 1
  1. 1.Ivanovo State University of Chemistry and TechnologyIvanovoRussia
  2. 2.G.A. Krestov Institute of Solution Chemistry, Russian Academy of SciencesIvanovoRussia

Personalised recommendations