Advertisement

Russian Journal of Physical Chemistry A

, Volume 93, Issue 8, pp 1465–1470 | Cite as

Enthalpy Characteristics of N-Methylglycine Dissolution in Some Aqueous–Organic Mixtures at 298.15 K

  • V. I. SmirnovEmail author
  • V. G. Badelin
PHYSICAL CHEMISTRY OF SOLUTIONS
  • 2 Downloads

Abstract

The enthalpies of N-methylglycine dissolution in aqueous solutions of acetonitrile (AN), 1,4-dioxane (DO), acetone (AC), and dimethylsulfoxide (DMSO) at a mole fraction of an organic solvent x2 of 0‒0.25 and T = 298.15 K. The results of the experiment were used to calculate the standard values of the enthalpies of dissolution (\({{\Delta }_{{{\text{sol}}}}}H^\circ \)) and transfer (\({{\Delta }_{{{\text{tr}}}}}H^\circ \)) of N-methylglycine from water to the mixed solvent, as well as the enthalpy coefficients of pairwise interactions (hxy) of N-methylglycine with organic solvent molecules. The influence of the composition of an aqueous–organic mixture and the structure of organic solvents on the enthalpy characteristics of dissolution and transfer of N-methylglycine is considered. The effect of energetics of intermolecular interactions between the components of a mixed solvent on intermolecular interactions of N-methylglycine with co-solvent molecules is estimated. The main properties of the cosolvent that significantly affect the energetics of interaction with N-methylglycine molecules in an aqueous solution are determined—polarity/polarizability and the electron-donating ability of the cosolvent.

Keywords:

amino acids enthalpies of dissolution and transfer aqueous–organic mixtures enthalpy coefficients of pairwise interactions 

Notes

REFERENCES

  1. 1.
    V. G. Badelin and V. I. Smirnov, Russ. J. Phys. Chem. A 92, 1299 (2018).CrossRefGoogle Scholar
  2. 2.
    V. I. Smirnov and V. G. Badelin, J. Mol. Liq. 255, 471 (2018).CrossRefGoogle Scholar
  3. 3.
    V. I. Smirnov, V. G. Badelin, and I. N. Mezhevoi, Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol. 46, 91 (2003).Google Scholar
  4. 4.
    V. I. Smirnov and V. G. Badelin, Biophysics 49, 375 (2004).Google Scholar
  5. 5.
    V. I. Smirnov and V. G. Badelin, Russ. J. Phys. Chem. A 79, 583 (2005).Google Scholar
  6. 6.
    V. I. Smirnov, I. N. Mezhevoi, and V. G. Badelin, Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol. 47, 38 (2004).Google Scholar
  7. 7.
    V. I. Smirnov and V. G. Badelin, Russ. J. Phys. Chem. A 80, 672 (2006).CrossRefGoogle Scholar
  8. 8.
    V. G. Badelin, E. Yu. Tyunina, and I. N. Mezhevoi, Russ. J. Appl. Chem. 80, 711 (2007).CrossRefGoogle Scholar
  9. 9.
    V. I. Smirnov and V. G. Badelin, Thermochim. Acta 606, 41 (2015).CrossRefGoogle Scholar
  10. 10.
    B. Palecz, J. Therm. Anal. Calorim. 54, 257 (1998).CrossRefGoogle Scholar
  11. 11.
    H. Piekarski and B. Nowicka, J. Therm. Anal. Calorim. 102, 31 (2010).CrossRefGoogle Scholar
  12. 12.
    B. Palecz, H. Piekarski, and W. Romanowski, J. Mol. Liq. 84, 279 (2000).CrossRefGoogle Scholar
  13. 13.
    V. Gutman, The Donor-Acceptor Approach to Molecular Interactions (Plenum, New York, 1978).CrossRefGoogle Scholar
  14. 14.
    V. I. Smirnov and V. G. Badelin, Russ. J. Phys. Chem. A 92, 93 (2018).CrossRefGoogle Scholar
  15. 15.
    J. J. Kozak, W. S. Knight, and W. Kauzmann, J. Chem. Phys. 48, 675 (1968).CrossRefGoogle Scholar
  16. 16.
    W. G. McMillan and J. E. Mayer, J. Chem. Phys. 13, 276 (1945).CrossRefGoogle Scholar
  17. 17.
    H. Piekarski and M. Tkaczyk, J. Chem. Soc., Faraday Trans. 87, 3661 (1991).CrossRefGoogle Scholar
  18. 18.
    V. G. Badelin and V. I. Smirnov, Russ. J. Phys. Chem. A 84, 1163 (2010).CrossRefGoogle Scholar
  19. 19.
    V. I. Smirnov and V. G. Badelin, Thermochim. Acta 495, 90 (2009).CrossRefGoogle Scholar
  20. 20.
    V. I. Smirnov and V. G. Badelin, Thermochim. Acta 526, 46 (2011).CrossRefGoogle Scholar
  21. 21.
    V. I. Smirnov and V. G. Badelin, Thermochim. Acta 503–504, 97 (2010).CrossRefGoogle Scholar
  22. 22.
    V. I. Smirnov and V. G. Badelin, Thermochim. Acta 551, 145 (2013).CrossRefGoogle Scholar
  23. 23.
    V. I. Smirnov and V. G. Badelin, J. Chem. Ing. Data 56, 1774 (2014).CrossRefGoogle Scholar
  24. 24.
    M. J. Kamlet, M. H. Abraham, R. M. Doherty, and R. W. Taft, J. Am. Chem. Soc. 106, 464 (1984).CrossRefGoogle Scholar
  25. 25.
    M. J. Kamlet and R. W. Taft, J. Am. Chem. Soc. 98, 377 (1976).CrossRefGoogle Scholar
  26. 26.
    M. J. Kamlet, J. L. M. Abboud, and R. W. Taft, J. Am. Chem. Soc. 99, 6027 (1977).CrossRefGoogle Scholar
  27. 27.
    V. I. Smirnov and V. G. Badelin, J. Mol. Liq. 229, 198 (2017).CrossRefGoogle Scholar
  28. 28.
    V. I. Smirnov and V. G. Badelin, Thermochim. Acta 616, 20 (2015).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Krestov Institute of the Chemistry of Solutions, Russian Academy of SciencesIvanovoRussia

Personalised recommendations