Advertisement

Russian Journal of Physical Chemistry A

, Volume 93, Issue 8, pp 1428–1434 | Cite as

High-temperature Mass Spectrometry Study of the Thermodynamic Properties of CaTiO3 Perovskite

  • S. I. ShornikovEmail author
CHEMICAL THERMODYNAMICS AND THERMOCHEMISTRY
  • 3 Downloads

Abstract

Values of the activity of oxides in CaTiO3 perovskite in the temperature range of 1791–2398 K are calculated from the data obtained via Knudsen effusion mass spectrometry. The values of the Gibbs energy, and the enthalpy and entropy of the formation of perovskite from individual oxides (−39.88 ± 0.54 kJ/mol and 3.15 ± 0.28 J/(mol K), respectively) are determined. The melting enthalpy of perovskite is 47.61 ± 1.84 kJ/mol at 2241 ± 10 K.

Keywords:

Knudsen effusion mass spectrometry perovskite thermodynamic properties 

Notes

ACKNOWLEDGMENTS

The author is grateful to O.I. Yakovlev (Vernadsky Institute of Geochemistry and Analytical Chemistry) for his constant interest and useful comments in the writing of this work, and to M.A. Nazarov (Vernadsky Institute of Geochemistry and Analytical Chemistry) for his support in the performance of this work.

This work was supported by Program 7 of the Presidium of the Russian Academy of Sciences, “Experimental and Theoretical Studies of Solar System Objects and Planetary Star Systems: Transients in Astrophysics” and Russian Foundation for Basic Research (grant no. 19-05-00801А).

REFERENCES

  1. 1.
    G. Rose, J. Prakt. Chem. 19, 459 (1840).CrossRefGoogle Scholar
  2. 2.
    S. I. Shornikov, Russ. J. Phys. Chem. A 93, 866 (2019).Google Scholar
  3. 3.
    A. S. Berezhnoi, Multicomponent Oxide Systems (Naukova Dumka, Kiev, 1970) [in Russian].Google Scholar
  4. 4.
    R. Coontz, Science 342, 1438 (2013).Google Scholar
  5. 5.
    K. K. Kelley and A. D. Mah, U. S. Bur. Min. Rept., No. 5490, 48 (1959).Google Scholar
  6. 6.
    L. A. Reznitskii and A. S. Guzei, Russ. Chem. Rev. 47, 99 (1978).CrossRefGoogle Scholar
  7. 7.
    R. A. Robie and B. S. Hemingway, U. S. Geol. Surv. Bull., No. 2131 (1995).Google Scholar
  8. 8.
    I. Barin, Thermochemical Data of Pure Substances (VCH, Weinheim, 2003).Google Scholar
  9. 9.
    C. W. Bale, E. Belisle, P. Chartrand, S. A. Decterov, G. Eriksson, A. E. Gheribi, K. Hack, I.-H. Jung, Y.‑B. Kang, C. Melancon, A. D. Pelton, S. Petersen, C. Robelin, J. Sangster, P. Spencer, and M.-A. van Ende, CALPHAD 54, 35 (2016).CrossRefGoogle Scholar
  10. 10.
    C. H. Shomate, J. Am. Chem. Soc. 68, 964 (1946).CrossRefGoogle Scholar
  11. 11.
    B. F. Woodfield, J. L. Shapiro, R. Stevens, et al., J. Chem. Thermodyn. 31, 1573 (1999).CrossRefGoogle Scholar
  12. 12.
    W. J. Buykx, J. Nucl. Mater. 107, 78 (1982).CrossRefGoogle Scholar
  13. 13.
    T. Sato, S. Yamazaki, T. Yamashita, et al., J. Nucl. Mater. 294, 135 (2001).CrossRefGoogle Scholar
  14. 14.
    B. F. Naylor and O. A. Cook, J. Am. Chem. Soc. 68, 1003 (1946).CrossRefGoogle Scholar
  15. 15.
    F. Guyot, P. Richet, P. Courtial, and P. Gillet, Phys. Chem. Miner. 20, 141 (1993).CrossRefGoogle Scholar
  16. 16.
    M. Yashima and R. Ali, Solid State Ionics 180, 120 (2009).CrossRefGoogle Scholar
  17. 17.
    B. I. Panfilov and N. N. Fedos’ev, Zh. Neorg. Khim. 9, 2685 (1964).Google Scholar
  18. 18.
    K. K. Kelley, S. S. Todd, and E. G. King, U.S. Bur. Min. Rept., No. 5059 (1954).Google Scholar
  19. 19.
    E. Takayama-Muromachi and A. Navrotsky, J. Solid State Chem. 72, 244 (1988).CrossRefGoogle Scholar
  20. 20.
    T. R. S. Prasanna and A. Navrotsky, J. Mater. Res. 9, 3121 (1994).CrossRefGoogle Scholar
  21. 21.
    J. Linton, A. Navrotsky, and Y. Fei, Phys. Chem. Miner. 25, 591 (1998).CrossRefGoogle Scholar
  22. 22.
    R. L. Putnam, A. Navrotsky, B. F. Woodfield, et al., J. Chem. Thermodyn. 31, 229 (1999).CrossRefGoogle Scholar
  23. 23.
    K. B. Helean, A. Navrotsky, E. R. Vance, et al., J. Nucl. Mater. 303, 226 (2002).CrossRefGoogle Scholar
  24. 24.
    A. Navrotsky, ECS Trans. 45, 11 (2012).CrossRefGoogle Scholar
  25. 25.
    N. U. Navi, R. Z. Shneck, T. Y. Shvareva, et al., J. Am. Ceram. Soc. 95, 1717 (2012).CrossRefGoogle Scholar
  26. 26.
    S. K. Sahu, P. S. Maram, and A. Navrotsky, J. Am. Ceram. Soc. 96, 3670 (2013).CrossRefGoogle Scholar
  27. 27.
    D. Feng, R. Shivaramaiah, and A. Navrotsky, Am. Mineral. 101, 2051 (2016).CrossRefGoogle Scholar
  28. 28.
    W. Gong, L. Wu, and A. Navrotsky, J. Am. Ceram. Soc. 101, 1361 (2018).CrossRefGoogle Scholar
  29. 29.
    N. D. Topor and Yu. L. Suponitskii, Russ. Chem. Rev. 53, 827 (1984).CrossRefGoogle Scholar
  30. 30.
    S. Koito, M. Akaogi, O. Kubota, and T. Suzuki, Phys. Earth Planet. Inter. 120, 1 (2000).CrossRefGoogle Scholar
  31. 31.
    S. Aronson, J. Nucl. Mater. 107, 34 (1982).CrossRefGoogle Scholar
  32. 32.
    P. Gillet, F. Guyot, G. D. Price, et al., Phys. Chem. Miner. 20, 159 (1993).CrossRefGoogle Scholar
  33. 33.
    A. N. Golubenko and T. N. Rezukhina, Zh. Fiz. Khim. 38, 2920 (1964).Google Scholar
  34. 34.
    T. N. Rezukhina, V. A. Levitskii, and M. Ya. Frenkel’, Izv. Akad. Nauk SSSR, Neorg. Mater. 2, 325 (1966).Google Scholar
  35. 35.
    R. W. Taylor and H. Schmalzried, J. Phys. Chem. 68, 2444 (1964).CrossRefGoogle Scholar
  36. 36.
    K. T. Jacob and K. P. Abraham, J. Chem. Thermodyn. 41, 816 (2009).CrossRefGoogle Scholar
  37. 37.
    D. Klimm, M. Schmidt, N. Wolff, et al., J. Cryst. Growth 486, 117 (2018).CrossRefGoogle Scholar
  38. 38.
    K. K. Kelley, U. S. Bur. Min. Bull., No. 393 (1936).Google Scholar
  39. 39.
    R. C. DeVries, R. Roy, and E. F. Osborn, J. Am. Ceram. Soc. 38 (5), 158 (1955).CrossRefGoogle Scholar
  40. 40.
    Y. Bottinga and P. Richet, Earth Planet. Sci. Lett. 40, 382 (1978).Google Scholar
  41. 41.
    V. P. Glushko, L. V. Gurvich, G. A. Bergman, et al., Thermodynamical Properties of Individual Substances, The Handbook, Ed. by V. P. Glushko (Nauka, Moscow, 1978–1982) [in Russian].Google Scholar
  42. 42.
    M. W. Chase, J. Phys. Chem. Ref. Data, Monograph, No. 9 (1998).Google Scholar
  43. 43.
    I. Nerad and V. Danek, Chem. Pap. 56, 77 (2002).Google Scholar
  44. 44.
    S.-W. Cho and H. Suito, Met. Mater. Trans. A 25 (2), 5 (1994).CrossRefGoogle Scholar
  45. 45.
    M. Kishi and H. Suito, Steel Res. 65, 261 (1994).CrossRefGoogle Scholar
  46. 46.
    S. Banon, C. Chatillon, and M. Allibert, Can. Met. Q. 20, 79 (1981).CrossRefGoogle Scholar
  47. 47.
    S. I. Shornikov and I. Yu. Archakov, in Proceedings of the 2nd International Symposium on High Temperature Mass Spectrometry, Ed. by L. Kudin, M. Butman, and A. Smirnov (ISUCST, Ivanovo, 2003), p. 112.Google Scholar
  48. 48.
    S. I. Shornikov, I. Yu. Archakov, and T. Yu. Chemekova, Russ. J. Phys. Chem. A 74, 677 (2000).Google Scholar
  49. 49.
    G. N. Lewis and M. Randall, Thermodynamics and the Free Energy of Chemical Substances (McGraw-Hill, New York, London, 1923).Google Scholar
  50. 50.
    G. R. Belton and R. J. Fruehan, Metall. Trans. B 2, 291 (1971).CrossRefGoogle Scholar
  51. 51.
    I. Prigogine and R. Defay, Chemical Thermodynamics (Longman, London, 1954).Google Scholar
  52. 52.
    I. S. Kulikov, Thermal Dissociation of Compounds (Metallurgiya, Moscow, 1969) [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of SciencesMoscowRussia

Personalised recommendations