Russian Journal of Physical Chemistry A

, Volume 93, Issue 8, pp 1537–1542 | Cite as

Theoretical Study of Substituent Effect on the pKa Values of Cr(CO)3(para-XC6H4COOH) Complexes

  • Reza GhiasiEmail author
  • Ali Zamani
  • Mostafa Khademi Shamami


In this investigation substituent effect on the pKa values of the Cr(CO)3(para-XC6H4COOH) complexes (X = NH2, OH, H, F, Cl, CN, NO2) was demonstrated at the wB97XD/6-311G(d,p) level of theory through aqueous phase calculation. The conductor-like polarized continuum model (CPCM) was used for calculation in solution phase. The CPCM calculations were accompanied with SMD-Coulomb atomic radii. The linear correlation relationships that can be established between the calculated pKa values with Hammett constants and deprotonating energy were analyzed. Also, the atomic charges of the acidic proton were calculated through QTAIM and NBO methods and their correlations with the obtained pKa values were studied.


(tricarbonylchromium)benzoic acids pKa substituent effect conductor-like polarized continuum model (CPCM) natural bond orbital (NBO) quantum theory of atoms in molecules (QTAIM) 


  1. 1.
    E. O. Fischer, K. Ofele, H. Essler, W. Frohlich, J. P. Mortensen, and W. Semmlinger, Z. Naturforsch. B 13, 458 (1958).CrossRefGoogle Scholar
  2. 2.
    M. HudeZek and S. Toma, J. Organomet. Chem. 406, 147 (1991).Google Scholar
  3. 3.
    C. A. L. Mahaffy and J. Hamilton, Synth. Reactiv. Inorg. Met.-Org. Chem. 17, 849 (1987).Google Scholar
  4. 4.
    C. A. L. Mahaffy and J. Hamilton, Synth. Reactiv. Inorg. Met.-Org. Chem. 17, 43 (1987).Google Scholar
  5. 5.
    E. O. Fischer, K. Ofele, H. Essler, W. Frolich, J. P. Mortensrsen, and W. Semmlinger, Cherm. Ber. 91, 2763 (1958).CrossRefGoogle Scholar
  6. 6.
    M. Ashraf and W. R. Jackson, J. Chem. Soc. Perkin II 11, 103 (1972).CrossRefGoogle Scholar
  7. 7.
    M. K. Shamami, R. Ghiasi, and M. D. Asli, J. Chin. Chem. Soc. 64, 369 (2017).CrossRefGoogle Scholar
  8. 8.
    H. Ghobadi, R. Ghiasi, and S. Jamehbozorgi, J. Chin. Chem. Soc. 64, 522 (2017).CrossRefGoogle Scholar
  9. 9.
    R. Ghiasi, H. Pasdar, and S. Fereidoni, Russ. J. Inorg. Chem. 61, 327 (2016).CrossRefGoogle Scholar
  10. 10.
    R. Ghiasi and A. Heydarbeighi, Russ. J. Inorg. Chem. 61, 985 (2016).CrossRefGoogle Scholar
  11. 11.
    R. Ghiasi, H. Pasdar, and F. Irajizadeh, J. Chil. Chem. Soc 60, 2740 (2015).CrossRefGoogle Scholar
  12. 12.
    A. Peikari, R. Ghiasi, and H. Pasdar, Russ. J. Phys. Chem. A 89, 250 (2015).CrossRefGoogle Scholar
  13. 13.
    R. Ghiasi and E. Amini, J. Struct. Chem. 56, 1483 (2015).CrossRefGoogle Scholar
  14. 14.
    M. Z. Fashami and R. Ghiasi, J. Struct. Chem. 56, 1474 (2015).CrossRefGoogle Scholar
  15. 15.
    R. Ghiasi and H. Pasdar, Russ. J. Phys. Chem. A 87, 973 (2013).CrossRefGoogle Scholar
  16. 16.
    R. Ghiasi and A. Boshak, J. Mex. Chem. Soc. 57, 8 (2013).Google Scholar
  17. 17.
    H. Pasdar and R. Ghiasi, Main Group Chem. 8, 143 (2009).CrossRefGoogle Scholar
  18. 18.
    C. Hansch, A. Leo, and R. W. Taft, Chem. Rev. 97, 165 (1991).CrossRefGoogle Scholar
  19. 19.
    L. P. Hammett, J. Am. Chem. Soc. 59, 96 (1937).CrossRefGoogle Scholar
  20. 20.
    S. Kheirjou, A. Abedin, A. Fattahi, and M. M. Hashemi, Comput. Theor. Chem. 1027, 191 (2014).CrossRefGoogle Scholar
  21. 21.
    U. A. Chaudry and P. L. A. Popelier, J. Org. Chem. 69, 233 (2004).CrossRefGoogle Scholar
  22. 22.
    J. Zhang, Y. Sun, C. Mao, H. Gao, W. Zhou, and Z. Zhou, J. Mol. Struct.: THEOCHEM 906, 46 (2009).CrossRefGoogle Scholar
  23. 23.
    K. C. Gross and P. G. Seybold, Int. J. Quantum Chem. 80, 1107 (2000).CrossRefGoogle Scholar
  24. 24.
    G.-C. Bahram and A. Ghiami-Shomami, Comput. Theor. Chem. 1054, 71 (2015).CrossRefGoogle Scholar
  25. 25.
    M. Remko, J. Bojarska, A. Remková, and W. Maniukiewicz, Comput. Theor. Chem. 1062, 50 (2015).CrossRefGoogle Scholar
  26. 26.
    D. D. Perrin, B. Dempsey, and E. P. Serjeant, pK a Prediction for Organic Acids and Bases (Chapman and Hall, Cambridge, 1981).Google Scholar
  27. 27.
    L. P. Hammett, Physical Organic Chemistry, 2nd ed. (McGraw-Hill, New York, 1970).Google Scholar
  28. 28.
    C. A. Hollingsworth, P. G. Seybold, and C. M. Hadad, Int. J. Quantum Chem. 90, 1396 (2002).CrossRefGoogle Scholar
  29. 29.
    M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalman, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, et al., Gaussian 09 (Gaussian Inc., Wallingford, CT, 2009).Google Scholar
  30. 30.
    P. J. Hay, J. Chem. Phys. 66, 4377 (1977).CrossRefGoogle Scholar
  31. 31.
    R. Krishnan, J. S. Binkley, R. Seeger, and J. A. Pople, J. Chem. Phys. 72, 650 (1980).CrossRefGoogle Scholar
  32. 32.
    A. D. McLean and G. S. Chandler, J. Chem. Phys. 72, 5639 (1980).CrossRefGoogle Scholar
  33. 33.
    A. J. H. Wachters, J. Chem. Phys. 52, 1033 (1970).CrossRefGoogle Scholar
  34. 34.
    J. D. Chai and M. Head-Gordon, Phys. Chem. Chem. Phys. 10, 6615 (2008).CrossRefGoogle Scholar
  35. 35.
    M. Cossi, N. Rega, G. Scalmani, and V. Barone, J. Comp. Chem. 24, 669 (2003).CrossRefGoogle Scholar
  36. 36.
    A. V. Marenich, C. J. Cramer, and D. G. Truhlar, J. Phys. Chem. B 113, 6378 (2009).CrossRefGoogle Scholar
  37. 37.
    T. A. Keith, TK Gristmill Software (Overland Park KS, USA, 2013). Scholar
  38. 38.
    A. E. Reed, L. A. Curtiss, and F. Weinhold, Chem. Rev. 88, 899 (1988).CrossRefGoogle Scholar
  39. 39.
    E. D. Glendening, A. E. Reed, J. E. Carpenter, and F. Weinhold, NBO Version 3.1 (Gaussian Inc., PA, USA, 1998).Google Scholar
  40. 40.
    J. Tomasi and M. Persico, Chem. Rev. 94, 2027 (1994).CrossRefGoogle Scholar
  41. 41.
    A. Ben-Naim, Solvation Thermodynamics (Plenum, New York, 1987).CrossRefGoogle Scholar
  42. 42.
    R. Gomez-Bombarelli, M. Gonzalez-Perez, M. T. Perez-Prior, E. Calle, and J. Casado, J. Org. Chem. 74, 4943 (2009).CrossRefGoogle Scholar
  43. 43.
    J. Ho and M. L. Coote, Theor. Chem. Acc. 125, 3 (2010).CrossRefGoogle Scholar
  44. 44.
    R. Pliego, Chem. Phys. Lett. 367, 145 (2003).CrossRefGoogle Scholar
  45. 45.
    K. Murlowska and N. Sadlej-Sosnowska, J. Phys. Chem. A 109, 5590 (2005).CrossRefGoogle Scholar
  46. 46.
    I. E. Charif, S. M. Mekelleche, D. Villemin, and N. Mora-Diez, J. Mol. Struct.: THEOCHEM 818, 1 (2007).CrossRefGoogle Scholar
  47. 47.
    M. D. Liptak and G. C. Shields, J. Am. Chem. Soc. 123, 7314 (2001).CrossRefGoogle Scholar
  48. 48.
    D. P. Dissanayake and R. Senthilnithy, J. Mol. Struct.: THEOCHEM 910, 93 (2009).CrossRefGoogle Scholar
  49. 49.
    B. Nicholls and M. C. Whitin, J. Chem. Soc., 551 (1959).Google Scholar
  50. 50.
    C. A. Hollingsworth, P. G. Seybold, and C. M. Hadad, Int. J. Quantum Chem. 90, 1396 (2002).CrossRefGoogle Scholar
  51. 51.
    R. F. W. Bader, Atoms in Molecules: A Quantum Theory (Oxford Univ. Press, Oxford, UK, 1999).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • Reza Ghiasi
    • 1
    Email author
  • Ali Zamani
    • 2
  • Mostafa Khademi Shamami
    • 3
  1. 1.Department of Chemistry, East Tehran Branch, Islamic Azad UniversityTehranIran
  2. 2.Department of Chemistry, Science and Research Branch, Islamic Azad UniversityTehranIran
  3. 3.Young Researchers and Elite Club, East Tehran Branch, Islamic Azad UniversityTehranIran

Personalised recommendations