Advertisement

Russian Journal of Physical Chemistry A

, Volume 93, Issue 8, pp 1584–1588 | Cite as

Adsorption and Membranotropic Properties of Colloid Systems Based on Cationic Amphiphiles: the Effect of the Head Group Structure

  • D. A. KuznetsovaEmail author
  • D. R. Gabdrakhmanov
  • S. S. Lukashenko
  • L. Ya. Zakharova
PHYSICAL CHEMISTRY OF SURFACE PHENOMENA

Abstract

The aggregation characteristics of cationic amphiphiles with a hexadecyl radical and a variable head group in aqueous solutions were evaluated and their adsorption parameters were calculated. A transition from ammonium to imidazolium head group makes micelle formation and adsorption thermodynamically favorable. The structure of the head group was shown to play key role in the ability of surfactant molecules to be embedded in the lipid bilayer. The ability of some amphiphiles to increase the membranotropic ability of the drugs metronidazole and chloramphenicol was demonstrated.

Keywords:

cationic amphiphiles aggregation adsorption parameters phase transition temperature metronidazole chloramphenicol 

Notes

REFERENCES

  1. 1.
    Z. Qian, D. Huang, S. Yi, et al., Tenside, Surfactants Deterg. 53, 540 (2016).CrossRefGoogle Scholar
  2. 2.
    V. Chauhan, R. Kamboj, S. P. Singh Rana, et al., J. Colloid Interface Sci. 446, 263 (2015).CrossRefGoogle Scholar
  3. 3.
    A. Bhadani, S. Singh, R. Kamboj, et al., Colloid Polym. Sci. 291, 2289 (2013).CrossRefGoogle Scholar
  4. 4.
    K. Bijma and J. B. F. N. Engberts, Langmuir 13, 4843 (1997).CrossRefGoogle Scholar
  5. 5.
    A. Bhadani, M. Tani, T. Endo, et al., Phys. Chem. Chem. Phys. 17, 19474 (2015).CrossRefGoogle Scholar
  6. 6.
    A. Cornellas, L. Perez, F. Comelles, et al., J. Colloid Interface Sci. 355, 164 (2011).CrossRefGoogle Scholar
  7. 7.
    E. I. Yatskevich, A. B. Mirgorodskaya, S. S. Lukashenko, and L. Ya. Zakharova, Russ. Chem. Bull. 63, 1801 (2014).CrossRefGoogle Scholar
  8. 8.
    A. B. Mirgorodskaya, F. G. Valeeva, S. V. Zakharov, D. A. Kuryashov, N. Yu. Bashkirtseva, and L. Ya. Zakharova, Russ. Chem. Bull. 67, 291 (2018).CrossRefGoogle Scholar
  9. 9.
    H. Ju, Y. Jiang, T. Geng, et al., J. Mol. Liq. 264, 306 (2018).CrossRefGoogle Scholar
  10. 10.
    B. Brycki, A. Kozirog, I. Kowalczyk, et al., Molecules 22, 1810 (2017).CrossRefGoogle Scholar
  11. 11.
    S. Mandal and J. Kuchlyan, J. Phys. Chem. B 118, 5913 (2014).CrossRefGoogle Scholar
  12. 12.
    M. Kaur, G. Singh, S. Kumar, et al., J. Colloid Interface Sci. 511, 344 (2018).CrossRefGoogle Scholar
  13. 13.
    E. A. Vasilieva, A. R. Ibragimova, A. B. Mirgorodskaya, E. I. Yackevich, A. B. Dobrynin, I. R. Nizameev, M. K. Kadirov, L. Ya. Zakharova, Yu. F. Zuev, and A. I. Konovalov, Russ. Chem. Bull. 63, 232 (2014).CrossRefGoogle Scholar
  14. 14.
    E. A. Vasilieva, A. R. Ibragimova, S. S. Lukashenko, et al., Fluid Phase Equilib. 376, 172 (2014).CrossRefGoogle Scholar
  15. 15.
    A. R. Ibragimova, A. B. Mirgorodskaya, E. A. Vasilieva, et al., Colloids Surf. A 526, 20 (2017).CrossRefGoogle Scholar
  16. 16.
    F. Li, Y. Liu, and W. Lin, J. Mol. Liq. 256, 372 (2018).CrossRefGoogle Scholar
  17. 17.
    Md. A. Hoque and Md. F. Ahmed, J. Mol. Liq. 260 (15), 121 (2018).Google Scholar
  18. 18.
    D. A. Samarkina, D. R. Gabdrakhmanov, S. S. Lukashenko, A. R. Khamatgalimov, and L. Ya. Zakharova, Russ. J. Gen. Chem. 87, 2826 (2017).CrossRefGoogle Scholar
  19. 19.
    D. R. Gabdrakhmanov, F. G. Valeeva, V. E. Semenov, et al., Macroheterocycles 9 (1), 29 (2016).CrossRefGoogle Scholar
  20. 20.
    D. R. Gabdrakhamanov, D. A. Samarkina, V. E. Semenov, et al., Phosphorus Sulfur Silicon Relat. Elem. 191, 1673 (2016).CrossRefGoogle Scholar
  21. 21.
    D. A. Samarkina, D. R. Gabdrakhmanov, V. E. Semenov, F. G. Valeeva, L. M. Gubaidullina, L. Ya. Zakharova, V. S. Reznik, and A. I. Konovalov, Russ. J. Gen. Chem. 86, 656 (2016).CrossRefGoogle Scholar
  22. 22.
    D. A. Samarkina, D. R. Gabdrakhmanov, V. E. Semenov, F. G. Valeeva, A. E. Nikolaev, L. F. Saifina, and L. Ya. Zakharova, Russ. J. Gen. Chem. 87, 1977 (2017).CrossRefGoogle Scholar
  23. 23.
    L. Zakharova, M. Voronin, V. Semenov, et al., ChemPhysChem 13, 788 (2012).CrossRefGoogle Scholar
  24. 24.
    M. López-López, P. López-Cornejo, V. I. Martín, et al., J. Colloid Interface Sci. 521, 197 (2018).CrossRefGoogle Scholar
  25. 25.
    M. Martínez-Negro, A. L. Barrán-Berdón, Cl. Aicart-Ramos, et al., Colloids Surf. B 161, 519 (2018).CrossRefGoogle Scholar
  26. 26.
    D. Gabdrakhmanov, D. Samarkina, V. Semenov, et al., Colloids Surf. A 480, 113 (2015).CrossRefGoogle Scholar
  27. 27.
    D. R. Gabdrakhmanov, D. Samarkina, V. E. Semenov, et al., J. Mol. Liq. 218, 255 (2016).CrossRefGoogle Scholar
  28. 28.
    D. R. Gabdrakhmanov, D. A. Samarkina, V. E. Semenov, et al., Macroheterocycles 10, 567 (2017).CrossRefGoogle Scholar
  29. 29.
    D. A. Samarkina, D. R. Gabdrakhmanov, S. S. Lukashenko, et al., Colloids Surf., A 529, 990 (2017).CrossRefGoogle Scholar
  30. 30.
    J. P. Clamme, S. Bernacchi, C. Vuilleumier, et al., Biochim. Biophys. Acta 1467, 347 (2000).CrossRefGoogle Scholar
  31. 31.
    T. Yina, M. Qina, and W. Shena, Colloids Surf. A 461, 22 (2014).CrossRefGoogle Scholar
  32. 32.
    A. Pal and S. Yadav, Fluid Phase Equilib. 412, 71 (2016).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • D. A. Kuznetsova
    • 1
    Email author
  • D. R. Gabdrakhmanov
    • 1
  • S. S. Lukashenko
    • 1
  • L. Ya. Zakharova
    • 1
  1. 1.Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of SciencesKazanRussia

Personalised recommendations