Advertisement

Russian Journal of Physical Chemistry A

, Volume 93, Issue 8, pp 1589–1591 | Cite as

Synthesis, Structural Characteristics, and Adsorption Properties of Macroporous Alumina

  • T. D. KhokhlovaEmail author
PHYSICAL CHEMISTRY OF SURFACE PHENOMENA
  • 2 Downloads

Abstract

Macroporous alumina is synthesized via precipitation with sulfuric acid from a sodium aluminate solution. It is established that introducing a coagulating agent (sodium chloride) preventing macrogel formation makes it possible to obtain highly porous samples of alumina with specific surface areas of ~100 m2/g, a large pore volume of 1.6–1.7 cm3/g, and an average pore diameter of 50–75 nm. According to the adsorption isotherms and the pH dependence of hemoglobin adsorption that such samples have a high capacity for protein macromolecules. The maximum adsorption of hemoglobin is ~500 mg/g, and is observed at pH 6–7. Adsorption falls substantially when the pH is reduced to 4 or increased to 9, and it is close to zero at pH 11.

Keywords:

macroporous alumina synthesis structure hemoglobin adsorption 

Notes

REFERENCES

  1. 1.
    Immobilized Enzymes, Ed. by I. V. Berezin (Mosk. Gos. Univ., Moscow, 1976), Vol. 1, p. 106 [in Russian].Google Scholar
  2. 2.
    T. D. Khokhlova, Yu. S. Nikitin, and O. I. Voroshilova, Zh. Vseross. Khim. Ob-va im. M. D. Mendeleeva 34, 363 (1989).Google Scholar
  3. 3.
    Yu. A. Eltekov, A. V. Kiselev, T. D. Khokhlova, and Yu. S. Nikitin, Chromatografia 6, 187 (1973).CrossRefGoogle Scholar
  4. 4.
    A. A. Artyomova, O. I. Voroshilova, Yu. S. Nikitin, et al., Adv. Colloid Interface Sci. 25, 235 (1986).CrossRefGoogle Scholar
  5. 5.
    G. D. Chukin, The Structure of Aluminum Oxide and Hydrodesulfurization Catalysts. Reaction Mechanisms (Paladin Printa, Moscow, 2010) [in Russian].Google Scholar
  6. 6.
    G. P. Vishnyakova, V. A. Dzis’ko, and L. M. Kofeli, Kinet. Katal. 11, 1545 (1970).Google Scholar
  7. 7.
    V. A. Dzis’ko, A. P. Karnaukhov, and D. V. Tarasova, Physicochemical Fundamentals for the Synthesis of Oxide Catalysts (Nauka, Novosibirsk, 1978) [in Russian].Google Scholar
  8. 8.
    E. D. Radchenko, Industrial Catalysts for Hydrogenation Refining Processes (Khimiya, Moscow, 1987) [in Russian].Google Scholar
  9. 9.
    O. I. Voroshilova, Yu. S. Nikitin, and N. K. Shoniya, Vestn. Mosk. Univ., Ser. Khim. 29, 492 (1988).Google Scholar
  10. 10.
    R. Iler, Chemistry of Silica (Wiley, New York, 1979), Vol. 1.Google Scholar
  11. 11.
    N. K. Bebris, Yu. S. Nikitin, N. M. Rudakova, et al., Vestn. Mosk. Univ., Ser. Khim. 45, 382 (2004).Google Scholar
  12. 12.
    T. D. Khokhlova and Yu. S. Nikitin, Vestn. Mosk. Univ., Ser. Khim. 46, 227 (2005).Google Scholar
  13. 13.
    T. D. Khokhlova, Russ. J. Phys. Chem. A 91, 2002 (2017).CrossRefGoogle Scholar
  14. 14.
    Experimental Methods in Adsorption and Molecular Chromatography, Ed. by Yu. S. Nikitin and R. S. Petrova (Mosk. Gos. Univ., Moscow, 1990) [in Russian].Google Scholar
  15. 15.
    H. W. Determann and W. Michel, J. Chromatorg. 25, 303 (1966).Google Scholar
  16. 16.
    H. D. Jakubke and H. Jeschkeit, Aminosäuren, Peptide, Proteine (Chemie, Berlin, 1982) [in German].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Department of Chemistry, Moscow State UniversityMoscowRussia

Personalised recommendations