Advertisement

Russian Journal of Physical Chemistry A

, Volume 93, Issue 8, pp 1598–1602 | Cite as

Luminescent Properties of Neodymium Acetylacetonate Introduced into Polymeric Matrixes in a Supercritical СО2 Medium

  • V. S. KaplinEmail author
  • A. S. Kopylov
  • D. S. Ionov
  • G. A. Yurasik
  • A. B. Solov’eva
PHOTOCHEMISTRY AND MAGNETOCHEMISTRY
  • 6 Downloads

Abstract

Phosphor polymers that exhibit luminescence in the blue region of the spectrum are produced by impregnating thermoplastic polymers with neodymium(III) acetylacetonate in a supercritical carbon dioxide medium. The spectral characteristics of the prepared systems are studied, and an interpretation of the observed change in the nature of luminescence is proposed.

Keywords:

luminescence neodymium acetylacetonate supercritical carbon dioxide 

Notes

ACKNOWLEDGMENTS

This work was funded by a subsidy allocated to the Institute of Chemical Physics, Russian Academy of Sciences, as part of State Task no. 46.14, AAAA-A17-117-117032750202-6, topic no. 0082-2014-0006 “Developing Scientific Bases of Environmentally Friendly Technologies for the Production of Chemicals and Materials, Including Nanomaterials, Using Nontraditional Ways of Treating a Substance (Solid-phase Processes, Photochemistry, Supercritical fluids) and Fast Chemical and Physical Processes in Turbulent Flows.”

REFERENCES

  1. 1.
    K. Kuriki, Y. Koike, and Y. Okamoto, Chem. Rev. 102, 2347 (2002).CrossRefGoogle Scholar
  2. 2.
    H. Liang, Q. Zhang, Z. Zheng, et al., Opt. Lett. 29, 477 (2004).CrossRefGoogle Scholar
  3. 3.
    J. Zubia and J. Arrue, Opt. Fiber Technol. 7, 101 (2001).CrossRefGoogle Scholar
  4. 4.
    S. Lian, C. Rong, D. Yin, et al., J. Phys. Chem. C 113, 6298 (2009).CrossRefGoogle Scholar
  5. 5.
    G. Zucchi, O. Mauru, P. Thuery, et al., Inorg. Chem. 47, 10398 (2008).CrossRefGoogle Scholar
  6. 6.
    V. A. Vorob’ev, B. M. Sinel’nikov, V. D. Kreslavskii, et al., RF Patent No. 2007108564 (2010).Google Scholar
  7. 7.
    S. Shuvaev, V. Utochnikova, L. Marciniak, et al., Dalton Trans. 43, 3121 (2014).CrossRefGoogle Scholar
  8. 8.
    W. T. Carnall, P. R. Fields, and K. Rajnak, J. Chem. Phys. 49, 4424 (1968).CrossRefGoogle Scholar
  9. 9.
    A.-M. Fausto and J. V.-G. Maria, E. D.-G. Marta, Analyst 123, 151 (1998).Google Scholar
  10. 10.
    N. S. Poluektov, L. I. Kononenko, N. P. Efryushkina, and S. V. Bel’tyukova, Spectrophotometric and Luminescent Methods for the Determination of Lanthanides (Naukova Dumka, Kiev, 1989) [in Russian].Google Scholar
  11. 11.
    C. Huang, Rare Earth Coordination Chemistry (Wiley, New York, 2010).CrossRefGoogle Scholar
  12. 12.
    J.-C. G. Bunzli and S. V. Eliseeva, Springer Ser. Fluoresc. 7, 1–46 (2011).Google Scholar
  13. 13.
    I. V. Taidakov, Doctoral (Chem.) Dissertation (Peoples’ Friendship Univ. Russ, Moscow, 2015).Google Scholar
  14. 14.
    H. F. Brito, O. L. Malta, M. C. F. C. Felinto, et al., J. Alloys Compd. 344, 294 (2002).CrossRefGoogle Scholar
  15. 15.
    S. V. Eliseeva and J.-C. G. Bunzli, Chem. Soc. Rev. 39, 1 (2009).Google Scholar
  16. 16.
    G. F. de Sa, O. L. Malta, C. de Mello Donega, et al., Coord. Chem. Rev. 196, 165 (2000).CrossRefGoogle Scholar
  17. 17.
    K. Binnemans, Chem. Rev. 109, 4283 (2009).CrossRefGoogle Scholar
  18. 18.
    H.-G. Liu, F. Xiao, W.-S. Zhang, et al., J. Lumin. 114, 187 (2005).CrossRefGoogle Scholar
  19. 19.
    V. S. Marevtsev, L. S. Kol’tsova, A. V. Lyubimov, et al., Russ. Chem. Bull. 37, 2032 (1988).CrossRefGoogle Scholar
  20. 20.
    S. Z. Rogovina, A. B. Solov’eva, N. A. Aksenova, and A. A. Zharov, Polymer Sci., Ser. A 46, 238 (2004).Google Scholar
  21. 21.
    A. de Bettencourt-Dias, Dalton Trans., 2229 (2007).Google Scholar
  22. 22.
    C. Du, L. Ma, Y. Xu, et al., Eur. Polym. J. 34, 23 (1998).CrossRefGoogle Scholar
  23. 23.
    D. Wang, J. Zhang, Q. Lin, et al., J. Mater. Chem. 13, 2279 (2003).CrossRefGoogle Scholar
  24. 24.
    V. I. Gerasimova, Yu. S. Zavorotnyi, A. O. Rybaltovskii, et al., Sverkhkrit. Fluidy Teor. Prakt. 5 (2), 56 (2010).Google Scholar
  25. 25.
    D. L. Tomasko, H. Li, D. Liu, et al., Ind. Eng. Chem. Res. 42, 6431 (2003).CrossRefGoogle Scholar
  26. 26.
    M. Polyakov and V. N. Bagratashvili, Ross. Khim. Zh. (Zh. Ob-va D. I. Mendeleeva) 43 (2), 93 (1999).Google Scholar
  27. 27.
    N. N. Glagolev, A. B. Solov’eva, A. V. Kotova, V. T. Shashkova, B. I. Zapadinskii, N. L. Zaichenko, L. S. Kol’tsova, A. I. Shienok, P. S. Timashev, and V. N. Bagratashvili, Russ. J. Phys. Chem. A 83, 861 (2009).CrossRefGoogle Scholar
  28. 28.
    L. Winkless, R. H. C. Tan, Y. Zheng, et al., Appl. Phys. Lett. 89, 111115 (2006).CrossRefGoogle Scholar
  29. 29.
    A. S. Kopylov, V. I. Yusupov, A. V. Cherkasova, et al., Sverkhkrit. Fluidy Teor. Prakt., No. 2, 56 (2018).Google Scholar
  30. 30.
    F. M. Gumerov, A. N. Sabiraznov, and G. I. Gumerova, Sub- and Supercritical Fluids in Polymer Processing (FEN, Kazan, 2000) [in Russian].Google Scholar
  31. 31.
    A. V. Kotova, N. N. Glagolev, I. A. Matveeva, A. V. Cherkasova, V. T. Shashkova, L. A. Pevtsova, B. I. Zapadinskii, A. B. Solov’eva, and V. N. Bagratashvili, Polymer Sci., Ser. A 52, 522 (2010).CrossRefGoogle Scholar
  32. 32.
    A. A. Ansari, R. Ilmi, and K. Iftikhar, J. Lumin. 132, 51 (2012).CrossRefGoogle Scholar
  33. 33.
    N. A. Aksenova, N. N. Glagolev, V. T. Shashkova, N. L. Zaichenko, L. S. Kol’tsova, A. I. Shienok, I. R. Mardaleishvili, P. S. Timashev, B. I. Zapadinskii, and A. B. Solov’eva, Russ. J. Phys. Chem. A 82, 1570 (2008).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • V. S. Kaplin
    • 1
    Email author
  • A. S. Kopylov
    • 1
  • D. S. Ionov
    • 2
  • G. A. Yurasik
    • 2
  • A. B. Solov’eva
    • 1
  1. 1.Institute of Chemical Physics, Russian Academy of SciencesMoscowRussia
  2. 2.Center of Photochemistry, Russian Academy of SciencesMoscowRussia

Personalised recommendations