Advertisement

Russian Journal of Physical Chemistry A

, Volume 93, Issue 8, pp 1460–1464 | Cite as

Constants of the Stability of Glycylglycinate Complexes of Copper(II) in Water–Ethanol Solutions

  • V. A. IsaevaEmail author
  • A. S. Molchanov
  • K. A. Kipyatkov
  • V. A. Sharnin
PHYSICAL CHEMISTRY OF SOLUTIONS
  • 3 Downloads

Abstract

Constants of the stability of glycylglycinate copper(II) complexes in water–ethanol solutions of variable composition are determined via potentiometry at a temperature of 298 K and an ionic strength of the solutions of 0.1 (NaClO4). It is established that the formation of normal and deprotonated mono- and bis-glycylglycinate copper(II) complexes is possible in solutions. When the concentration of the organic component in a solution is raised, the stability of copper(II) glycylglycinates increases. The constants of glycylglycine peptide group deprotonation were calculated. The contributions from the solvation reagents to the change in the Gibbs energy of the investigated equilibrium processes is estimated as a function of the concentration of ethanol in a solution.

Keywords:

glycylglycine copper(II) complexation stability constant water–ethanol solvent 

Notes

REFERENCES

  1. 1.
    S. P. Datta and B. R. Rabin, Trans. Faraday Soc. 52, 1117 (1956).CrossRefGoogle Scholar
  2. 2.
    R. Nakon and R. J. Angelici, Inorg. Chem. 12, 1269 (1973).CrossRefGoogle Scholar
  3. 3.
    L. A. Kochergina and A. V. Emel’yanov, Russ. J. Phys. Chem. A 89, 580 (2015).CrossRefGoogle Scholar
  4. 4.
    E. L. Gogolashvili, A. V. Zakharov, and G. A. Farra-khova, Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol. 26, 10 (1983).Google Scholar
  5. 5.
    S. J. Pelletier, Chim. Phys. 69, 751 (1972).CrossRefGoogle Scholar
  6. 6.
    D. Chakraborty and P. Bhattacharya, J. Inorg. Biochem. 41, 57 (1991).CrossRefGoogle Scholar
  7. 7.
    K. Burger, Experimental Methods for Investigation of Solvation, Ionic and Complex Formation Reactions in Nonaqueous Solutions (Akad. Kiado, Budapest, 1982).Google Scholar
  8. 8.
    V. A. Borodin, E. V. Kozlovskii, and V. P. Vasil’ev, Zh. Neorg. Khim. 31, 10 (1986).Google Scholar
  9. 9.
    G. Eichhorn, Inorganic Biochemistry (Elsevier, Amsterdam, 1973), Vol. 1.Google Scholar
  10. 10.
    F. L. Lafferty, E. G. Jensen, and J. G. Sheppard, Inorg. Chem. 8, 1875 (1969).CrossRefGoogle Scholar
  11. 11.
    V. P. Vasil’ev, V. A. Borodin, and E. V. Kozlovskii, Applications of Computers in Analytical Chemistry (Vyssh. Shkola, Moscow, 1993) [in Russian].Google Scholar
  12. 12.
    V. V. Naumov, V. A. Isaeva, and V. A. Sharnin, Russ. J. Inorg. Chem. 56, 1139 (2011).CrossRefGoogle Scholar
  13. 13.
    E. H. Woollej, D. G. Hurkot, and L. G. Herber, J. Phys. Chem. 74, 3908 (1970).CrossRefGoogle Scholar
  14. 14.
    A. Kaneda and A. Martell, J. Coord. Chem. 4, 137 (1974).CrossRefGoogle Scholar
  15. 15.
    A. Brunetti, M. Lim, and G. Nancollas, J. Am. Chem. Soc. 90, 5120 (1968).CrossRefGoogle Scholar
  16. 16.
    Yu. Yu. Lur’e, Handbook on Analytical Chemistry (Khimiya, Moscow, 1971) [in Russian].Google Scholar
  17. 17.
    M. Bordignon-Luiz, B. Szpoganicz, M. Rizzoto, et al., Inorg. Chim. Acta 254, 345 (1997).CrossRefGoogle Scholar
  18. 18.
    K. B. Yatsimirskii, P. A. Manorik, and N. K. Davidenko, Koord. Khim. 14, 311 (1988).Google Scholar
  19. 19.
    H. Sigel, B. Prijs, and R. Martin, Inorg. Chim. Acta 56, 45 (1981).CrossRefGoogle Scholar
  20. 20.
    H. Sigel, R. Grisser, and B. Prijs, Z. Naturforsch. B 27, 353 (1972).CrossRefGoogle Scholar
  21. 21.
    O. Yamauchi, Y. Hirano, Y. Nakao, and A. Nakahara, Can. J. Chem. 47, 3441 (1969).CrossRefGoogle Scholar
  22. 22.
    R. Martin, Bull. Soc. Chim. Fr., 2217 (1967).Google Scholar
  23. 23.
    J. L. Biester and P. M. Ruoff, J. Am. Chem. Soc. 81, 6517 (1959).CrossRefGoogle Scholar
  24. 24.
    V. N. Afanas’ev, V. A. Shormanov, and G. A. Krestov, Tr. Ivanov. Khim.-Tekhnol. Inst., No. 13, 36 (1972).Google Scholar
  25. 25.
    V. A. Isaeva, V. A. Sharnin, and V. A. Shormanov, Russ. J. Phys. Chem. A 71, 1226 (1997).Google Scholar
  26. 26.
    V. A. Sharnin, Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol. 48 (7), 44 (2005).Google Scholar
  27. 27.
    Yu. Yu. Fadeev, V. A. Sharnin, and V. A. Shormanov, Russ. J. Inorg. Chem. 42, 1104 (1997).Google Scholar
  28. 28.
    V. A. Isaeva, V. A. Sharnin, and V. A. Shormanov, Russ. J. Coord. Chem. 25, 852 (1999).Google Scholar
  29. 29.
    H. Sigel, R. Malini-Balakrishava, and O. K. Hiring, J. Am. Chem. Soc. 107, 5137 (1985).CrossRefGoogle Scholar
  30. 30.
    V. A. Isaeva, V. A. Sharnin, and V. A. Shormanov, Russ. J. Phys. Chem. A 72, 1985 (1998).Google Scholar
  31. 31.
    A. Lewandowski, Electrochim. Acta 29, 547 (1984).CrossRefGoogle Scholar
  32. 32.
    A. V. Nevskii, V. A. Sharnin, V. A. Shormanov, and G. A. Krestov, Koord. Khim. 9, 391 (1983).Google Scholar
  33. 33.
    C. F. Wells, J. Chem. Soc. Faraday Trans. 75, 53 (1979).CrossRefGoogle Scholar
  34. 34.
    B. P. Dey and S. C. Lahiri, Indian J. Chem. A 25, 136 (1986).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • V. A. Isaeva
    • 1
    Email author
  • A. S. Molchanov
    • 2
  • K. A. Kipyatkov
    • 2
  • V. A. Sharnin
    • 1
  1. 1.Ivanovo State University of Chemistry and TechnologyIvanovoRussia
  2. 2.Kostroma State UniversityKostromaRussia

Personalised recommendations