Russian Journal of Physical Chemistry A

, Volume 93, Issue 6, pp 1128–1132 | Cite as

Rational Design of Hierarchical SiO2@TiO2 Composite with Large Internal Void Space for High-Performance Microwave Absorption

  • Xuqiang Ji
  • Yusheng NiuEmail author
  • Yuanhong XuEmail author


The design and development of excellent microwave absorption (MA) material is significant for healthcare, electronic, and security industries. Herein, a sophisticated composite with the advantages of large interlayer space, nanoparticles with small size, and hierarchical nanostructure (core@shell@void@shell configuration) simultaneously is demonstrated for the first time. Such unique SiO2@TiO2 nanoparticle was fabricated via a multi-step process. Associating maximum reflection loss value can reach –35.2 dB in certain frequency of 11 GHz and thickness of 3.0 mm. Small-sized TiO2 nanoparticles (about 6 nm) in first coating and large gap between TiO2 coating layers are significantly critical for the superior MA performance. Our work points a new direction to rationally construct high-performance microwave absorber.


microwave absorption hierarchical nanostructure SiO2@TiO2 interstitial void space multilayer 



Xuqiang Ji and Yusheng Niu contributed equally to this work. This work was supported by Qingdao Science and Technology Planning Project (17-6-3-15-gx).


  1. 1.
    L. Wang, Y. Huang, X. Sun, H. Huang, P. Liu, M. Zong, and Y. Wang, Nanoscale 6, 3157 (2014).CrossRefGoogle Scholar
  2. 2.
    T. Liu, Y. Pang, M. Zhu, and S. Kobayashi, Nanoscale 6, 2447 (2014).CrossRefGoogle Scholar
  3. 3.
    Z. Liu, G. Bai, Y. Huang, F. Li, Y. Ma, T. Guo, X. He, X. Lin, H. Gao, and Y. Chen, J. Phys. Chem. C 111, 13696 (2007).CrossRefGoogle Scholar
  4. 4.
    Y. Zhang, Y. Huang, T. Zhang, H. Chang, P. Xiao, H. Chen, Z. Huang, and Y. Chen, Adv. Mater. 27, 2049 (2015).CrossRefGoogle Scholar
  5. 5.
    G. Sun, B. Dong, M. Cao, B. Wei, and C. Hu, Chem. Mater. 23, 1587 (2011).CrossRefGoogle Scholar
  6. 6.
    S. Ohkoshi, S. Kuroki, S. Sakurai, K. Matsumoto, K. Sato, and S. Sasaki, Angew. Chem. Int. Ed. 46, 8392 (2007).CrossRefGoogle Scholar
  7. 7.
    Y. Qing, X. Wang, Y. Zhou, Z. Huang, F. Luo, and W. Zhou, Compos. Sci. Technol. 102, 161 (2014).CrossRefGoogle Scholar
  8. 8.
    M. Yu, C. Liang, M. Liu, X. Liu, K. Yuan, H. Cao, and R. Che, J. Mater. Chem. C 2, 7275 (2014).CrossRefGoogle Scholar
  9. 9.
    Y. Du, W. Liu, R. Qiang, Y. Wang, X. Han, J. Ma, and P. Xu, ACS Appl. Mater. Inter. 6, 12997 (2014).CrossRefGoogle Scholar
  10. 10.
    T. Wu, Y. Liu, X. Zeng, T. Cui, Y. Zhao, Y. Li, and G. Tong, ACS Appl. Mater. Inter. 8, 7370 (2016).CrossRefGoogle Scholar
  11. 11.
    C. Tian, Y. Du, P. Xu, R. Qiang, Y. Wang, D. Ding, J. Xue, J. Ma, H. Zhao, and X. Han, ACS Appl. Mater. Inter. 7, 20090 (2015).CrossRefGoogle Scholar
  12. 12.
    R. Qiang, Y. Du, H. Zhao, Y. Wang, C. Tian, Z. Li, X. Han, and P. Xu, J. Mater. Chem. A 3, 13426 (2015).CrossRefGoogle Scholar
  13. 13.
    M. Zong, Y. Huang, H. Wu, Y. Zhao, Q. Wang, and X. Sun, Mater. Lett. 114, 52 (2014).CrossRefGoogle Scholar
  14. 14.
    L. Wang, Y. Huang, X. Sun, H. J. Huang, P. B. Liu, M. Zong, and Y. Wang, Nanoscale 6, 3157 (2014).CrossRefGoogle Scholar
  15. 15.
    B. Zhao, G. Shao, B. Fan, W. Zhao, and R. Zhang, Phys. Chem. Chem. Phys. 17, 2531 (2015).CrossRefGoogle Scholar
  16. 16.
    L. Cao, D. Chen, and R. Caruso, Angew. Chem. Int. Ed. 52, 10986 (20131).Google Scholar
  17. 17.
    X. Wu and D. Xu, Adv. Mater. 22, 1516 (2010).CrossRefGoogle Scholar
  18. 18.
    Q. Liu, Q. Cao, H. Bi, C. Liang, K. Yuan, W. She, Y. Yang, and R. Che, Adv. Mater. 28, 486 (2016).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.College of Automation and Electrical Engineering, Qingdao UniversityQingdaoChina
  2. 2.College of Life Sciences, College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, Qingdao UniversityQingdaoChina

Personalised recommendations