Russian Journal of Physical Chemistry A

, Volume 93, Issue 6, pp 1032–1037 | Cite as

Experimental Study on Phase Equilibria in Na2B4O7–Na2SO4–H2O and Li2B4O7–Na2B4O7–H2O Aqueous Ternary Systems at 273 K

  • Wen Yao Zhang
  • Xiao Ping Li
  • Lei Yang
  • Shi Hua SangEmail author


The solubility data for ternary systems Na2SO4–Na2B4O7–H2O and Li2B4O7–Na2B4O7–H2O at 273 K were obtained experimentally by the isothermal solution equilibrium method, and the solid phases were analyzed by X-ray diffraction. On the base of the experimental results, the stable phase equilibrium diagrams for these two systems were constructed at 273 K. The stable phase equilibrium diagrams indicate that both phase diagrams show an invariant point, two univariant solubility curves and two solid phase crystalline regions. The two solid phases corresponding to the invariant point of ternary system Na2SO4–Na2B4O7–H2O are Na2B4O7 · 10H2O and Na2SO4 · 10H2O, and the two crystallization regions of the ternary system Li2B4O7–Na2B4O7–H2O are Na2B4O7 · 10H2O and Li2B4O7 · 3H2O, respectively. Thus, the two ternary systems belong to simple co-saturated type without complex salt or solid solution.


phase equilibrium solubility borate sulfate 



This project was supported by the National Natural Science Foundation of China (41873071) and the National Natural Science Foundation of China-Qaidam Saline Lake chemical engineering science research joint fund of Qinghai Provincial People’s Government (U1407108).


The authors declare no competing financial interest.


  1. 1.
    G. Y. Guo, J. Technol. Chem. Ind. Miner. 2, 1 (2006).Google Scholar
  2. 2.
    M. P. Zheng, W. G. Liu, and J. Xiang, Qinghai-Xizhang Plateau Saline Lakes (Beijing Sci. Technol., Beijing, China, 1989).Google Scholar
  3. 3.
    S. H. Sang, H. A. Yin, M. L. Tang, and N. F. Lei, J. Chem. Eng. Data 49, 1586 (2004).CrossRefGoogle Scholar
  4. 4.
    S. H. Sang, T. L. Deng, M. L. Tang, and H. A. Yin, J. Chengdu Univ. Technol. 24, 87 (1997).Google Scholar
  5. 5.
    Y. Zeng, M. L. Tang, and H. A. Yin, Chin. J. Appl. Chem. 18, 794 (2001).Google Scholar
  6. 6.
    S. H. Sang, H. A. Yin, and J. Peng, in Proceedings of the 13th National Symposium on Phase Diagrams China–Japan Joint Symposium on Phase Diagrams, Materials Design and Their Applications (2006), p. 320.Google Scholar
  7. 7.
    R. Z. Cui, S. H. Sang, Q. Z. Liu, and P. Wang, J. Chem. Eng. Data 59, 2252 (2014).CrossRefGoogle Scholar
  8. 8.
    R. Z. Cui, S. H. Sang, K. J. Zhang, and T. Li, J. Chem. Eng. Data 57, 3498 (2012).CrossRefGoogle Scholar
  9. 9.
    X. Zhang, S. H. Sang, C. H. Lai, and M. L. Sun, Chem. Eng. (China) 37, 44 (2009).Google Scholar
  10. 10.
    H. Feng and S. H. Sang, J. Salt Chem. Ind. 42, 8 (2013).Google Scholar
  11. 11.
    A. N. Campbell and E. M. Kartzmark, Can. J. Chem. 36, 171 (1958).CrossRefGoogle Scholar
  12. 12.
    Y. H. Liu, Y. F. Guo, X. P. Yu, Wang, and S. Q. T. L. Deng, Acta Geol. Sin. 88, 352 (2014).CrossRefGoogle Scholar
  13. 13.
    P. S. Song and H. A. Fu, Chin. J. Inorg. Chem. 7, 344 (1991).Google Scholar
  14. 14.
    P. S. Song, X. H. Du, and H. C. Xu, J. Chin. Sci. Bull. 29, 1072 (1984).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • Wen Yao Zhang
    • 1
  • Xiao Ping Li
    • 1
  • Lei Yang
    • 1
  • Shi Hua Sang
    • 1
    • 2
    Email author
  1. 1.College of Materials and Chemistry and Chemical Engineering, Chengdu University of TechnologyChengduChina
  2. 2.Mineral Resources Chemistry Key Laboratory of Sichuan Higher Education InstitutionsChengduChina

Personalised recommendations