Advertisement

Russian Journal of Physical Chemistry A

, Volume 93, Issue 6, pp 1178–1181 | Cite as

Voltammetric Determination of Ascorbic Acid in Pharmaceutical Formulations on a Boron Doped Diamond Electrode

  • M. D. VedenyapinaEmail author
  • M. M. KazakovaEmail author
  • A. M. SkundinEmail author
COLLOID CHEMISTRY AND ELECTROCHEMISTRY
  • 3 Downloads

Abstract

The electrochemical behavior of ascorbic acid (AA) is studied by means of cyclic voltammetry (CVA) and square-wave voltammetry (SWVA) on a boron doped diamond electrode (BDD). The possibility of using the voltammetric response signal to determine quantitatively the concentration of AA in an aqueous solution is shown. An analytical direct correlation function for SWVA at BDD is obtained. It is shown that the detection limit for AA is 1.87 μM. The applicability of SWVA for determining the content of AA in pharmaceutical preparations is demonstrated.

Keywords:

cyclic and square-wave voltammetry boron doped diamond electrode ascorbic acid electrochemical behavior 

Notes

REFERENCES

  1. 1.
    R. Thangamuthu, S. M. Senthil Kumar, and K. Chandrasekara Pillai, Sens. Actuators, B 120, 745 (2007).CrossRefGoogle Scholar
  2. 2.
    C. S. Erdurak-Kilic, B. Uslu, B. Dogan, et al., J. Anal. Chem. 61, 1113 (2006).CrossRefGoogle Scholar
  3. 3.
    H. R. Zare and N. Nasirizadeh, Sens. Actuators, B 143, 666 (2010).CrossRefGoogle Scholar
  4. 4.
    Sh.-M. Chen and W.-Y. Chzo, J. Electroanal. Chem. 587, 226 (2006).CrossRefGoogle Scholar
  5. 5.
    S. I. Vijaykumar, M. Algarra, and A. Martins, Electroanalysis 16, 2082 (2004).Google Scholar
  6. 6.
    S. Thiagarajan, Ts.-H. Tsai, and Sh.-M. Chen, Biosens, Bioelectron. 24, 2712 (2009).CrossRefGoogle Scholar
  7. 7.
    A. Nezamzadeh, M. K. Amini, and H. Faghihian, Int. J. Electrochem. Sci. 2, 583 (2007).Google Scholar
  8. 8.
    R. R. Protiva, S. S. Madhu, O. Takeyoshi, and O. Takeo, Electrochim. Acta 51, 4447 (2006).CrossRefGoogle Scholar
  9. 9.
    T. Kondo, Y. Niwano, A. Tamura, et al., Electrochim. Acta 54, 2312 (2009).CrossRefGoogle Scholar
  10. 10.
    S.-G. Park, J.-E. Park, E.-I. Cho, J.-H. Hwang, and T. Ohsaka, Res. Chem. Intermed. 32, 595 (2006).CrossRefGoogle Scholar
  11. 11.
    D. A. Tryk, H. Tachibana, H. Inoue, and A. Fujishima, Diamond Rel. Mater. 16, 881 (2007).CrossRefGoogle Scholar
  12. 12.
    S. Shahrokhian and M. Khafajia, Electrochim. Acta 55, 9090 (2010).CrossRefGoogle Scholar
  13. 13.
    S. Shahrokhian and M. Khafajia, Electrochim. Acta 51, 347 (2005).CrossRefGoogle Scholar
  14. 14.
    Z. Galus, Teoretyczne Podstawy Elektroanalizy Chemicznej (Panstw. Wyd. Naukowe, Warszawa, 1971).Google Scholar
  15. 15.
    M. Motahary, S. M. Ghoreishi, M. Behpour, and M. Golestaneh, J. Appl. Electrochem. 40, 841 (2010).CrossRefGoogle Scholar
  16. 16.
    G. Henze, Polarographie und Voltammetrie: Grundlagen und analytische Praxis (Springer, Berlin, Heidelberg, 2001).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Zelinsky Institute of Organic Chemistry, Russian Academy of SciencesMoscowRussia
  2. 2.Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of SciencesMoscowRussia

Personalised recommendations