Russian Journal of Physical Chemistry A

, Volume 93, Issue 6, pp 1116–1121 | Cite as

Multicenter Bonding and the Electron Deficient Molecules with Special Emphasis to Boron and Aluminium Compounds

  • Sudipta ChatterjeeEmail author


Compounds that contain fewer valence electrons than valence orbitals are referred to as electron deficient. In order to engage all of their valence orbitals in bonding, the atoms in electron deficient compounds sometimes form three-center two-electron (3c–2e) bonds. In a 3c–2e bond, the two electrons are shared by three atoms with each atom contributing one orbital to the formation of the bond. Essentially, this notion of a 3c–2e bond, with two electrons delocalized over three atoms, can be thought of in terms of resonance. Though the bonding pattern of these types of bond has been discovered, many questions remain unresolved. In this work, we are trying to explore computationally the actual bonding description in these types of complexes. Here we are trying to compare the extent of interaction between the two central atoms either directly or through bridge. As well as we are trying to examine the difference of reactivity of the bridgehead and terminal atom due to their different bonding pattern, we are trying to address all these questions for hydrido, halo and methyl compounds of two non-metals viz. B and Al.


boron and aluminium compounds multicenter bonding electron deficient molecules 


  1. 1.
    G. N. Lewis, J. Am. Chem. Soc. 38, 762 (1916).CrossRefGoogle Scholar
  2. 2.
    F. A. Cotton, G. Wilkinson, and P. L. Gaus, Basic Inorganic Chemistry, 2nd ed. (Wiley, New York, 1987), p. 113.Google Scholar
  3. 3.
    N. N. Greenwood and A. Earnshaw, Chemistry of the Elements, 2nd ed. (Butterworth-Heinemann, London, 1997).Google Scholar
  4. 4.
    M. J. Frisch et al., Gaussian 09W, Revision B.01 (Gaussian Inc., Pittsburgh, PA, 2010).Google Scholar
  5. 5a.
    A. D. Becke, Phys. Rev. A 38, 3098 (1988);CrossRefGoogle Scholar
  6. 5b.
    C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B 37, 785 (1988);CrossRefGoogle Scholar
  7. 5c.
    A. D. Becke, J. Chem. Phys. 98, 1372 (1993).CrossRefGoogle Scholar
  8. 6.
    E. D. Glendening, J. K. Badenhoop, A. E. Reed, J. E. Carpenter, J. A. Bohmann, C. M. Morales, and F. Weinhold, NBO, Version 5.0 (Theor. Chem. Inst., Univ. Wisconsin, Madison, WI, 2001).Google Scholar
  9. 7a.
    S. I. Gorelsky, AOMix Program.;Google Scholar
  10. 7b.
    S. I. Gorelsky and A. B. P. Lever, J. Organomet. Chem. 635, 187 (2001).CrossRefGoogle Scholar
  11. 8.
    S. H. Bauer, J. Am. Chem. Soc. 59, 1096 (1937).CrossRefGoogle Scholar
  12. 9.
    S. H. Bauer, Chern. Rev. 31, 46 (1942).CrossRefGoogle Scholar
  13. 10.
    H. C. Longuet-Higgins and R. P. Bell, J. Chem. Soc. 250 (1943).Google Scholar
  14. 11.
    K. Hedberg and V. Schomaker, J. Am. Chem. Soc. 73, 1482 (1951).CrossRefGoogle Scholar
  15. 12.
    R. L. DeKock and H. B. Gray, Chemical Structure and Bonding (Benjamin/Cummings, Menlo Park, CA, 1980).Google Scholar
  16. 13.
    F. A. Cotton, G. Wilkinson, C. A. Murillo, and M. Bochmann, Advanced Inorganic Chemistry, 6th ed. (Wiley, New York, 2007).Google Scholar
  17. 14.
    T. E. Taylor and M. B. Hall, J. Am. Chem. Soc. 102, 6136 (1980).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Department of Chemistry, Serampore CollegeSeramporeIndia

Personalised recommendations