Russian Journal of Physical Chemistry A

, Volume 93, Issue 6, pp 1024–1031 | Cite as

Mass-Spectrometric Study of Evaporation of Perovskite

  • S. I. ShornikovEmail author


The evaporation of perovskite CaTiO3 at 1700–2200 K was studied by the high-temperature mass-spectrometric Knudsen effusion method. The molecular components typical of simple oxides and a small amount of complex gaseous oxide CaTiO3 were identified in the gas phase over perovskite. The partial vapor pressures of the molecular components of the gas phase over perovskite were compared with those corresponding to simple oxides; it was found that the character of evaporation of perovskite is mainly affected by the calcium component.


Knudsen effusion mass spectrometric method evaporation thermodynamics perovskite 



I am grateful to O.I. Yakovlev (Vernadskii Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences) for his constant interest in this study and useful discussions and to M.A. Nazarov (Vernadskii Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences) for his support during this work.

This study was financially supported by the Presidium of the Russian Academy of Sciences, program no. 7 “Experimental and theoretical studies of solar system and star planetary system objects. Transition processes in astrophysics” and by the Russian Foundation for Basic Research (grant no. 19-05-00801A).


  1. 1.
    S. V. Stefanovsky and S. V. Yudintsev, Russ. Chem. Rev. 85 (9), 96 (2016).CrossRefGoogle Scholar
  2. 2.
    D. Wark and W. V. Boynton, Met. Planet. Sci. 36, 1135 (2001).CrossRefGoogle Scholar
  3. 3.
    A. M. Davis, A. Hashimoto, R. N. Clayton, and T. K. Mayeda, in Proceedings of the 26th Lunar and Planetary Scientific Conference, 1995, p. 3.Google Scholar
  4. 4.
    J. Zhang, S. Huang, A. M. Davis, et al., in Proceedings of the 43rd Lunar and Planetary Scientific Conference, 2012, Abstract No. 2132.Google Scholar
  5. 5.
    J. Zhang, S. Huang, A. M. Davis, et al., Geochim. Cosmochim. Acta 140, 365 (2014).CrossRefGoogle Scholar
  6. 6.
    L. D. Ershov, Tr. Giprotsementa, No. 1, 5 (1940).Google Scholar
  7. 7.
    R. S. Roth, J. Res. NBS 61, 437 (1958).Google Scholar
  8. 8.
    M. Kirschen and C. DeCapitani, J. Phase Equilib. 20, 593 (1999).CrossRefGoogle Scholar
  9. 9.
    V. P. Glushko, L. V. Gurvich, G. A. Bergman, et al., Thermodynamic Properties of Individual Substances, The Handbook, Ed. by V. P. Glushko (Nauka, Moscow, 1978–1982) [in Russian].Google Scholar
  10. 10.
    I. S. Kulikov, The Thermodynamics of Oxides (Metallurgiya, Moscow, 1986) [in Russian].Google Scholar
  11. 11.
    E. K. Kazenas and Yu. V. Tsvetkov, Oxide Evaporation (Nauka, Moscow, 1997) [in Russian].Google Scholar
  12. 12.
    M. W. Chase, J. Phys. Chem. Ref. Data, Monograph No. 9 (1998).Google Scholar
  13. 13.
    G. Balducci, G. Gigli, and M. Guido, J. Chem. Phys. 83, 1913 (1985).CrossRefGoogle Scholar
  14. 14.
    V. P. Zakharov and I. M. Protas, Izv. Akad. Nauk SSSR, Ser. Fiz. 38 (2), 23 (1974).Google Scholar
  15. 15.
    S. Banon, C. Chatillon, and M. Allibert, Canad. Metall. Quart. 20, 79 (1981).CrossRefGoogle Scholar
  16. 16.
    I. Yu. Archakov, S. I. Shornikov, T. Yu. Tchemekova, and M. M. Shultz, in Proceedings of the 9th World Conference on Titanium, Ed. by I. V. Gorynin and S. S. Ushkov (Prometey, St. Petersburg, 2000), Vol. 3, p. 1464.Google Scholar
  17. 17.
    S. I. Shornikov, I. Yu. Archakov, and M. M. Shultz, in Proceedings of the 9th World Conference on Titanium, Ed. by I. V. Gorynin and S. S. Ushkov (Prometey, St. Petersburg, 2000), Vol. 3, p. 1469.Google Scholar
  18. 18.
    O. Ostrovski, G. Tranell, V. L. Stolyarova, et al., High Temp. Mater. Process. 19, 345 (2000).CrossRefGoogle Scholar
  19. 19.
    S. I. Shornikov and I. Yu. Archakov, in Proceedings of the 2nd International Symposium on High Temperature Mass Spectrometry, Ed. by L. Kudin, M. Butman, and A. Smirnov, (ISUCST, Ivanovo, 2003), p. 112.Google Scholar
  20. 20.
    V. L. Stolyarova, D. O. Zhegalin, and S. V. Stolyar, Glass Phys. Chem. 30, 142 (2004).CrossRefGoogle Scholar
  21. 21.
    S. I. Lopatin and G. A. Semenov, Russ. J. Gen. Chem. 71, 1522 (2001).CrossRefGoogle Scholar
  22. 22.
    H. Schwarz and H. A. Tourltellotte, J. Vac. Sci. Technol. 6, 373 (1969).CrossRefGoogle Scholar
  23. 23.
    J. Hao, W. Si, X. X. Xia, et al., Appl. Phys. Lett. 76, 3100 (2000).CrossRefGoogle Scholar
  24. 24.
    B. E. Knox, in Trace Analysis by Mass Spectrometry, Ed. by A. J. Ahearn (Academic, New York, London, 1972), p. 423.Google Scholar
  25. 25.
    G. A. Semenov, E. N. Nikolaev, and K. E. Frantseva, Mass-Spectrometry Applications in Inorganic Chemistry (Khimiya, Leningrad, 1976) [in Russian].Google Scholar
  26. 26.
    S. I. Shornikov, I. Yu. Archakov, and T. Yu. Chemekova, Russ. J. Phys. Chem. A 74, 677 (2000).Google Scholar
  27. 27.
    I. O. Samoilova and E. K. Kazenas, Metally, No. 1, 33 (1995).Google Scholar
  28. 28.
    G. A. Semenov, Neorg. Mater. 5, 67 (1969).Google Scholar
  29. 29.
    J. Berkowitz, W. A. Chupka, and M. G. Inghram, J. Phys. Chem. 61, 1569 (1957).CrossRefGoogle Scholar
  30. 30.
    J. W. Warren, Nature (London, U.K.) 165 (4203), 810 (1950).CrossRefGoogle Scholar
  31. 31.
    L. V. Gurvich, G. V. Karachentsev, and V. N. Kondrat’ev, Energy of Chemical Bond Cleavage; Ionization Potentials and Affinity to the Electron (Nauka, Moscow, 1974) [in Russian].Google Scholar
  32. 32.
    S. I. Shornikov, Geochem. Int. 40 (Suppl. 1), S46 (2002).Google Scholar
  33. 33.
    G. A. Komlev, Zh. Fiz. Khim. 38, 2747 (1964).Google Scholar
  34. 34.
    S. I. Shornikov, Geochem. Int. 53, 1080 (2015).CrossRefGoogle Scholar
  35. 35.
    S. I. Shornikov, Extended Abstract of Cand. Sci. (Chem.) Dissertation (Inst. Silicate Chem. RAS, St. Petersburg, 1993).Google Scholar
  36. 36.
    W. O. Groves, M. Hoch, and H. L. Johnston, J. Phys. Chem. 59, 127 (1955).CrossRefGoogle Scholar
  37. 37.
    S. I. Shornikov and O. I. Yakovlev, Geochem. Int. 53, 690 (2015).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Vernadskii Institute of Geochemistry and Analytical Chemistry, Russian Academy of SciencesMoscowRussia

Personalised recommendations