Russian Journal of Physical Chemistry A

, Volume 93, Issue 6, pp 1038–1044 | Cite as

Studying Hydrotalcite-Like Compounds Isomorphically Substituted with Iron and Cobalt via Inverse Temperature-Programmed Reduction

  • I. G. Ryl’tsovaEmail author
  • F. Roessner
  • O. E. Lebedeva
  • O. V. Nestroinaya


The reducibility of multicomponent layered double hydrotalcite-like hydroxides containing Mg2+, Co2+, Al3+, and Fe3+ at different ratios of these metal cations and products of their thermal destruction in a hydrogen flow is studied via inverse temperature-programmed reduction (bTPD). It is shown that the temperature-programmed reduction profiles for layered double hydroxides (LDHs) contain signals corresponding not only to the reduction of iron and cobalt cations incorporated into the structure of brucite-like layers, but also ones corresponding to the reduction of cobalt and iron from the mixed oxides or spinel-like phases that appear due to the thermal destruction of LDHs occurring simultaneously with a reduction in iTPR measurements. Signals presumably corresponding to the reduction of residual nitrate anions are also revealed in iTPR profiles.


layered double hydroxides inverse temperature-programmed reduction cobalt iron 



The authors are grateful to the staff of the Center for Collective Use of “Technologies and Materials of the National Research University ‘BelSU’” for their help in our X-ray diffraction and elemental analyses, and to S. Stefan and J.-H. Bölte of Technical Chemistry Department 2 (Carl von Ossietzky Universität, Oldenburg, Germany) for their instructing us in inverse temperature-programmed reduction.

This work was performed as part of the Mikhail Lomonosov cooperative program of the German Academic Exchange Service and the Ministry of Education and Science of RF, State Task no. 11.711.2016/DAAD.


  1. 1.
    S. Miyata, Clays Clay Miner. 28, 50 (1980).CrossRefGoogle Scholar
  2. 2.
    W. T. Reichle, Solid State Ionics 22, 135 (1986).CrossRefGoogle Scholar
  3. 3.
    F. Cavani, F. Trifiro, and A. Vaccari, Catal. Today 11, 173 (1991).CrossRefGoogle Scholar
  4. 4.
    D. G. Evans and R. C. T. Slade, Struct. Bond. 119, 1 (2006).Google Scholar
  5. 5.
    C. Forano, T. Hibino, F. Leroux, and C. Taviot-Gueho, Dev. Clay. Sci. 1, 1021 (2006).CrossRefGoogle Scholar
  6. 6.
    F. Li and X. Duan, Struct. Bond. 119, 193 (2006).CrossRefGoogle Scholar
  7. 7.
    G. Fan, F. Li, D. G. Evans, and X. Duan, Chem. Soc. Rev. 43, 7040 (2014).CrossRefGoogle Scholar
  8. 8.
    B. F. Sels, D. E. De Vos, and P. A. Jacobs, Catal. Rev. 43, 443 (2001).CrossRefGoogle Scholar
  9. 9.
    H. Zazoua, A. Saadi, K. Bachari, et al., Res. Chem. Intermed. 40, 931 (2014).CrossRefGoogle Scholar
  10. 10.
    N. N. Das and S. C. Srivastava, Bull. Mater. Sci. 25, 283 (2002).CrossRefGoogle Scholar
  11. 11.
    M. Gabrovska, R. Edreva-Kardjieva, and D. Crisan, React. Kinet. Mech. Catal. 105, 79 (2012).CrossRefGoogle Scholar
  12. 12.
    L. Dussault, J. C. Dupin, and C. Guimon, J. Catal. 251, 223 (2007).CrossRefGoogle Scholar
  13. 13.
    M. S. Aw, G. Dražić, P. Djinović, and A. Pintara, Catal. Sci. Technol. 6, 3797 (2016).CrossRefGoogle Scholar
  14. 14.
    O. V. Nestroinaya, I. G. Ryl’tsova, O. E. Lebedeva, B. M. Uralbekov, and O. I. Ponomarenko, Russ. J. Gen. Chem. 87, 163 (2017).CrossRefGoogle Scholar
  15. 15.
    F. Roessner and S. Schoenen, FRG Patent WO2011134934 (2011).Google Scholar
  16. 16.
    A. G. Thomé, S. Peters, and F. Roessner, Catal. Commun. 97, 10 (2017).CrossRefGoogle Scholar
  17. 17.
    L. T. Bugaenko, S. M. Ryabykh, and A. L. Bugaenko, Mosc. Univ. Chem. Bull. 63, 303 (2008).CrossRefGoogle Scholar
  18. 18.
    Q. Fan, X. Li, and Z. Yang, Chem. Mater. 28, 6296 (2016).CrossRefGoogle Scholar
  19. 19.
    O. Lebedeva, D. Tichit, and B. Coq, Appl. Catal., A 183, 61 (1999).Google Scholar
  20. 20.
    S. Ribet, D. Tichit, B. Coq, et al., J. Solid State Chem. 142, 382 (1999).CrossRefGoogle Scholar
  21. 21.
    X. Gao, J. Shen, Y. Hsia, and Y. Chen, J. Chem. Soc., Faraday Trans. 89, 1079 (1993).CrossRefGoogle Scholar
  22. 22.
    P. Arnoldy and J. A. Moulijn, J. Catal. 93, 38 (1985).CrossRefGoogle Scholar
  23. 23.
    D. Li, M. Lu, S. Xu, et al., Int. J. Hydrogen Energy 42, 5063 (2017).CrossRefGoogle Scholar
  24. 24.
    H.-Y. Lin, Y.-W. Chen, and C. Li, Thermochim. Acta 400, 61 (2003).CrossRefGoogle Scholar
  25. 25.
    T. J. Vulic, A. F. K. Reitzmann, and K. Lázár, Chem. Eng. J. 207–208, 913 (2012).CrossRefGoogle Scholar
  26. 26.
    E. Genty, J. Brunet, C. Poupin, et al., Catalysts 5, 851 (2015).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • I. G. Ryl’tsova
    • 1
    Email author
  • F. Roessner
    • 2
  • O. E. Lebedeva
    • 1
  • O. V. Nestroinaya
    • 1
  1. 1.Belgorod National Research UniversityBelgorodRussia
  2. 2.Carl von Ossietzky Universität OldenburgOldenburgGermany

Personalised recommendations