Advertisement

Russian Journal of Physical Chemistry A

, Volume 93, Issue 6, pp 1133–1142 | Cite as

Using of TiO2/Ag2O Nanocomposite in Degradation of Acid Red 18 Dye in Photoreactor by Taguchi Experimental Design

  • Reza MoradiEmail author
  • Mahdi Hamidvand
  • Amin Ganjali
PHYSICAL CHEMISTRY OF NANOCLUSTERS AND NANOMATERIALS
  • 5 Downloads

Abstract

In this paper, the sol–gel method has been use to synthesized TiO2/Ag2O nanoparticles for photocatalytic degradation of azo dye Acid Red 18 (AR18) in aqueous solution. The TiO2/Ag2O nanoparticles were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared (FT-IR), and Brunauer–Emmett–Teller (BET) surface area analysis. A photoreactor with capacity 0.5 L, equipped with a low mercury pressure lamp UV-C (15 W) was used. The effective factors for the degradation of dye were determined and optimized using Taguchi fractional design method with four factors having four levels for each factor. Analysis the response of each experiment was based average standard deviation values was calculated. The Taguchi results showed that pH 3, catalyst amount 45 mg/L, H2O2 concentration 25 ppm and temperature 40°C was optimum conditions for this reaction. The most influenced of each factor on the process determined using Analysis of Variance (ANOVA) method. The most significant factor in this process was pH. The interaction between catalyst amount and temperature was the most influencing interaction. So first order reaction with k = 0.0289 min–1 was observed for the photocatalytic degradation reaction.

Keywords:

Taguchi design nanocomposite photodegradation sol–gel dye 

REFERENCES

  1. 1.
    H. Zollinger, Color Chemistry Synthesis, Properties, and Applications of Organic Dyes and Pigments, 3nd ed. (Wiley-VCH, Weinheim, 2003).Google Scholar
  2. 2.
    D. R. Waring and G. Hallas, The Chemistry and Application of Dyes (Plenum, New York, 1990).CrossRefGoogle Scholar
  3. 3.
    L. Ai, C. Zhang, F. Liao, Y. Wang, M. Li, L. Meng, and J. Jiang, J. Hazard. Mater. 198, 282 (2011).CrossRefGoogle Scholar
  4. 4.
    N. Bao, Y. Li, Z. T. Wei, G. B. Yin, and J. J. Niu, J. Phys. Chem. C 115, 5708 (2011).CrossRefGoogle Scholar
  5. 5.
    M. Torkaman, R. Moradi, and B. Keyvani, Rev. Roum. Chim. 61, 763 (2016).Google Scholar
  6. 6.
    S. Gul and O. Ozcan, Chem. Eng. J. 155, 684 (2009).CrossRefGoogle Scholar
  7. 7.
    V. Augugliaro, V. Loddo, M. Pagliaro, G. Palmisano, and L. Palmisano, Clean by Light Irradiation Practical Applications of Supported TiO 2 (RSC, Cambridge, UK, 2010).Google Scholar
  8. 8.
    M. Nikazar, K. Gholivand, and K. Mahanpoor, Kinet. Catal. 48, 230 (2007).Google Scholar
  9. 9.
    C. G. Silva and J. L. Faria, J. Photochem. Photobiol., A 155, 133 (2003).CrossRefGoogle Scholar
  10. 10.
    S. Taghavi Fardood, Z. Golfar, and A. Ramazani, J. Mater. Sci. 28, 17002 (2017).Google Scholar
  11. 11.
    N. M. Mahmoodi, Water Air Soil Pollut. 224, 1612 (2013).CrossRefGoogle Scholar
  12. 12.
    B. Bayarri, J. Gimenez, D. Curo, and S. Esplugas, Catal. Today 101, 227 (2005).CrossRefGoogle Scholar
  13. 13.
    C. Liu, C. Cao, X. Luo, and S. Luo, J. Hazard. Mater. 285, 319 (2015).CrossRefGoogle Scholar
  14. 14.
    N. Sobana, K. Selvam, and M. Swaminathan, Sep. Purif. Technol. 62, 648 (2008).CrossRefGoogle Scholar
  15. 15.
    M. Nikazar, K. Gholivand, and K. Mahanpoor, Desalination 219, 293 (2008).CrossRefGoogle Scholar
  16. 16.
    J. Saien and A. R. Soleymani, J. Hazard. Mater. 144, 506 (2007).CrossRefGoogle Scholar
  17. 17.
    C. Galindo, P. Jacques, and A. Kalt, J. Photochem. Photobiol., A 130, 35 (2003).CrossRefGoogle Scholar
  18. 18.
    A. Fujishima, T. N. Rao, and D. A. Tryk, J. Photochem. Photobiol., C 1, 1 (2000).Google Scholar
  19. 19.
    H. Balavi, S. Samadanian-Isfahani, M. Mehrabani-Zeinabad, and M. Edrissi, Powder Technol. 249, 549 (2013).CrossRefGoogle Scholar
  20. 20.
    M. A. H. Devadi, M. Krishna, H. N. Narasimha Murthy, and B. S. Sathyanarayana, Proc. Mater. Sci. 5, 612 (2014).CrossRefGoogle Scholar
  21. 21.
    S. M. Mousavi, S. Yaghmaei, A. Jafari, M. Vossoughi, and Z. Ghobadi, Chem. Eng. Process 46, 935 (2007).CrossRefGoogle Scholar
  22. 22.
    M. E. Olya, M. Vafaee, and M. Jahangiri, J. Saudi Chem. Soc. 21, 633 (2017).CrossRefGoogle Scholar
  23. 23.
    R. Moradi, J. Hossieni, A. Bodaghi, and M. Abdolmaleki, Int. J. Res. Appl. Sci. Eng. Technol. 3, (2015).Google Scholar
  24. 24.
    R. K. Roy, A Primer on The Taguchi Method, 2nd ed. (Soc. Manuf. Eng., New York, 2010).Google Scholar
  25. 25.
    H. Atil and Y. Unver, Pakistan J. Biol. Sci. 3, 1538 (2000).CrossRefGoogle Scholar
  26. 26.
    M. Edrissi, S. Samadanian-Isfahani, and M. Soleymani, Powder Technol. 249, 378 (2013).CrossRefGoogle Scholar
  27. 27.
    J. Coates, Interpretation of Infrared Spectra, A Practical Approach, Encyclopedia of Analytical Chemistry (Wiley, Chichester, 2000).Google Scholar
  28. 28.
    C. Wu, X. Liu, D. Wei, J. Fan, and L. Wang, Water Res. 35, 3927 (2001).CrossRefGoogle Scholar
  29. 29.
    M. Huang, C. Xu, Z. Wu, Y. Huang, J. Lin, and J. Wu, Dyes Pigm. 77, 327 (2008).CrossRefGoogle Scholar
  30. 30.
    Y. Wang and C. Hong, Water Res. 33, 2031 (1999).CrossRefGoogle Scholar
  31. 31.
    J. Saien, M. Asgari, A. R. Soleymani, and N. Taghavinia, Chem. Eng. J. 151, 295 (2009).CrossRefGoogle Scholar
  32. 32.
    C. M. Zhu, L. Y. Wang, L. R. Kong, X. Yang, L. S. Wang, S. J. Zheng, et al., Chemosphere 41, 303 (2000).CrossRefGoogle Scholar
  33. 33.
    C. M. So, M. Y. Cheng, J. C. Yu, and P. K. Wong, Chemosphere 46, 905 (2002).CrossRefGoogle Scholar
  34. 34.
    M. Saquib and M. Muneer, Dyes Pigm. 56, 37 (2003).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Young Researchers and Elite Club, Arak Branch, Islamic Azad UniversityArakIran
  2. 2.Department of Civil Engineering, Nahavand Center, Islamic Azad UniversityNahavandIran
  3. 3.Department of Experimental Science, Kahnooj Branch, Islamic Azad UniversityKahnoojIran

Personalised recommendations