Advertisement

Russian Journal of Physical Chemistry A

, Volume 93, Issue 6, pp 1143–1150 | Cite as

Effect of Water on the Structural Transformations in the Interfacial and Drainage Layers of Semipermeable Composite Membranes

  • S. I. LazarevEmail author
  • Yu. M. Golovin
  • A. A. LevinEmail author
PHYSICAL CHEMISTRY OF SURFACE PHENOMENA
  • 2 Downloads

Abstract

Air-dry and water-saturated samples of UAM-50 and UAM-100 composite membranes were studied by X-ray diffractomery (XRD) and differential scanning calorimetry (DSC). A full-profile analysis of the diffraction patterns was performed, and the radial distribution functions (RDFs) of atoms in the drainage layer were constructed. The RDFs generally illustrate the relationship with the geometry of the structure of the air-dry and water-saturated samples. The additional peak with the radii r3 = 6.18 Å and r3 = 6.44 Å with small coordination numbers in the water-saturated samples suggests that the interplanar space d (hk0) contains the atoms of the water molecules. It was found that water reduces the X-ray crystallinity by 26% in the UAM-50 sample and by 36% in UAM-100. According to the DSC data, an interfacial layer appears at the interface; the DSC curves of the water-saturated samples in the temperature range 125–226°C show an exothermal effect with ΔН = 20.7 kJ/kg for UAM-50 and ΔН = 27.95 kJ/kg for UAM-100, which indicates hydration of the polar groups of cellulose acetate and polyamide in the interfacial layer of the composite films.

Keywords:

water membrane interfacial layer crystallinity hydrogen bonds melting enthalpy 

Notes

REFERENCES

  1. 1.
    N. A. Plate, Membrany, No. 1, 4 (1999).Google Scholar
  2. 2.
    D. Xu, B. Xiang, Ji. Shao, and Y. Li, Ind. Water Treatm. 26 (4), 1 (2006).Google Scholar
  3. 3.
    S. Velu, K. Rambabu, and L. Muruganandam, Int. J. Chem. Tech. Res. 6, 565 (2014).Google Scholar
  4. 4.
    Y. Fang and S. J. Duranceau, Membranes 3, 196 (2013).CrossRefGoogle Scholar
  5. 5.
    B. K. Kumar, C. Nandi, and A. Guria, Braz. J. Chem. Eng. 34 (2) (2017).Google Scholar
  6. 6.
    F. Yan, H. Chen, Y. Lu, et al., J. Membr. Sci. 513, 108 (2016).CrossRefGoogle Scholar
  7. 7.
    H. F. Ridgway, G. Orbell, and S. Gray, J. Membr. Sci. 524, 436 (2017).CrossRefGoogle Scholar
  8. 8.
    G. B. Mel’nikova, G. K. Zhavnerko, S. A. Chizhik, et al., Membr. Membr. Tekhnol., No. 2, 144 (2016).Google Scholar
  9. 9.
    Membranes and Filter Elements. Vladipor. http://www.vladipor.ru/. Accessed May 18, 2018.Google Scholar
  10. 10.
    M. Ya. Ioelovich and G. P. Veveris, Khim. Drev., No. 5, 75 (1987).Google Scholar
  11. 11.
    V. I. Azarov, A. V. Burov, and A. V. Obolenskaya, Chemistry of Wood and Synthetic Polymers, The School-Book (SPbLTA, St. Petersburg, 1999) [in Russian].Google Scholar
  12. 12.
    X. Guan, PhD Dissertation (Univ. of Tennessee, TN, 2004). http://trace.tennessee.edu/utk_graddiss.Google Scholar
  13. 13.
    V. M. Polikarpov, S. I. Lazarev, S. A. Vyazovov, et al., Kondens. Sredy Mezhfaz. Granitsy 12, 382 (2010).Google Scholar
  14. 14.
    S. I. Lazarev, Yu. M. Golovin, D. S. Lazarev, and I. V. Chorochorina, Pet. Chem. 56, 423 (2016).CrossRefGoogle Scholar
  15. 15.
    T. A. Savitskaya, T. N. Shibailo, K. A. Selevich, et al., Vestn. BGU, Ser. 2, No. 3, 38 (2008).Google Scholar
  16. 16.
    S. N. Novikov, A. I. Ermolaeva, S. P. Timoshenkov, N. E. Korobova, and E. P. Goryunova, Russ. J. Phys. Chem. A 90, 1244 (2016).CrossRefGoogle Scholar
  17. 17.
    V. V. Ugrozov, Russ. J. Phys. Chem. A 89, 477 (2015).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Tambov State Technical UniversityTambovRussia

Personalised recommendations