Advertisement

Russian Journal of Physical Chemistry A

, Volume 93, Issue 6, pp 1088–1092 | Cite as

Adsorption of Common Transition Metal Atoms on Arsenene: A First-Principles Study

  • A. A. KistanovEmail author
  • S. Kh. Khadiullin
  • S. V. Dmitriev
  • E. A. Korznikova
STRUCTURE OF MATTER AND QUANTUM CHEMISTRY
  • 1 Downloads

Abstract

Arsenene, a new group V two-dimensional (2D) semiconducting material, has attracted the attention of researchers due to its unusual properties. Furthermore, it has been found that these properties can be controlled by different types of engineering, particularly by chemical functionalization of the arsenene surface. Here, the effects of the arsenene surface functionalization by the common transition metals, including Ag, Al, Co, Cr, Mg, Mn, Ti, and V on the electronic properties of arsenene are presented. All the considered elements are found to be strong donors to arsenene. Moreover, Co-, Cr-, Mn-, V-adsorbed arsenene are spin-polarized, while Ag-, Al-, Mg-, and Ti-adsorbed arsenene are non-spin-polarized. The present work renders new ways to modulate electronic properties of arsenene, which is useful for its application in nanodevices.

Notes

ACKNOWLEDGMENTS

A.A. Kistanov acknowledges the financial support from the Russian Foundation for Basic Research (grant no. 17-02-00984). S.V. Dmitriev thanks the Russian Science Foundation for the financial support (grant no. 16-12-10175), and Е.А. Korznikova thanks the Russian Foundation for Basic Research (grant no. 18-32-20158).

REFERENCES

  1. 1.
    P. Yasaei, B. Kumar, T. Foroozan, C. Wang, M. Asadi, D. Tuschel, J. E. Indacochea, R. F. Klie, and A. S. Khojin, Adv. Mater. 27, 1887 (2015).CrossRefGoogle Scholar
  2. 2.
    A. Castellanos-Gomez, L. Vicarelli, E. Prada, J. O. Island, K. L. Narasimha-Acharya, S. I. Blanter, D. J. Groenendijk, M. Buscema, G. A. Steele, J. V. Alvarez, H. W. Zandbergen, J. J. Palacios, and H. S. J. van der Zant, 2D Mater. 1, 025001 (2014).Google Scholar
  3. 3.
    P. Ares, F. Aguilar-Galindo, D. Rodríguez-San-Miguel, D. A. Aldave, S. Díaz-Tendero, M. Alcamí, F. Martín, J. Gomez-Herrero, and F. Zamora, Adv. Mater. 28, 6332 (2016).CrossRefGoogle Scholar
  4. 4.
    J. Ji, S. Xiufeng, L. Jizi, Y. Zhong, H. Chengxue, Z. Shengli, S. Meng, L. Lei, W. Wenhui, N. Zhenhua, H. Yufeng, and Z. Haibo, Nat. Commun. 7, 13352 (2016).CrossRefGoogle Scholar
  5. 5.
    S. Zhang, Z. Yan, Y. Li, Z. Chen, and H. Zeng, Angew. Chem., Int. Ed. 54, 3112 (2015).CrossRefGoogle Scholar
  6. 6.
    G. Wang, R. Pandey, and S. P. Karna, ACS Appl. Mater. Inter. 7, 11490 (2015).CrossRefGoogle Scholar
  7. 7.
    Z. Zhu and D. Tománek, Phys. Rev. Lett. 112, 176802 (2014).CrossRefGoogle Scholar
  8. 8.
    A. A. Kistanov, D. Kripalani, Y. Cai, K. Zhou, S. V. Dmitriev, and Y. W. Zhang, J. Mater. Chem. C 6, 4308 (2018).CrossRefGoogle Scholar
  9. 9.
    A. A. Kistanov, Y. Cai, K. Zhou, S. V. Dmitriev, and Y. W. Zhang, 2D Mater. 4, 015010 (2017).Google Scholar
  10. 10.
    A. A. Kistanov, Y. Cai, K. Zhou, S. V. Dmitriev, and Y. W. Zhang, J. Phys. Chem. C 120, 6876 (2016).CrossRefGoogle Scholar
  11. 11.
    D. R. Kripalani, A. A. Kistanov, Y. Cai, M. Xue, and K. Zhou, Phys. Rev. B 98, 085410 (2018).CrossRefGoogle Scholar
  12. 12.
    J. W. Jiang and H. S. Park, J. Phys. D: Appl. Phys. 47, 385304 (2014).CrossRefGoogle Scholar
  13. 13.
    G. Yang, T. Ma, and X. Peng, Appl. Phys. Lett. 112, 241904 (2018).CrossRefGoogle Scholar
  14. 14.
    A. A. Kistanov, Y. Cai, K. Zhou, S. V. Dmitriev, and Y. W. Zhang, J. Phys. Chem. C 120, 6876 (2016).CrossRefGoogle Scholar
  15. 15.
    J. Zhao, C. Liu, W. Guo, and J. Ma, Nanoscale 9, 7006 (2017).CrossRefGoogle Scholar
  16. 16.
    J. Guan, Z. Zhu, and D. Tománek, Phys. Rev. Lett. 113, 046804 (2014).CrossRefGoogle Scholar
  17. 17.
    A. S. Rodin, A. Carvalho, and A. H. Castro Neto, Phys. Rev. B 90, 075429 (2014).CrossRefGoogle Scholar
  18. 18.
    P. Ares, J. J. Palacios, G. Abellan, J. Gómez-Herrero, and F. Zamora, Adv. Mater. 30, 1703771 (2018).CrossRefGoogle Scholar
  19. 19.
    Y. Cai, Q. Ke, G. Zhang, Y. P. Feng, V. B. Shenoy, and Y. W. Zhang, Adv. Funct. Mater. 25, 2230 (2015).CrossRefGoogle Scholar
  20. 20.
    C. Kamal and M. Ezawa, Phys. Rev. B 91, 085423 (2015).CrossRefGoogle Scholar
  21. 21.
    L. Kou, Y. Ma, X. Tan, T. Frauenheim, A. Du, and S. Smith, J. Phys. Chem. C 119, 6918 (2015).CrossRefGoogle Scholar
  22. 22.
    Z. Zhu, J. Guan, and D. Tománek, Phys. Rev. B 91, 161404 (2015).CrossRefGoogle Scholar
  23. 23.
    H. S. Tsai, S. W. Wang, C. H. Hsiao, C. H. Chen, H. Ouyang, Y. L. Chueh, H. C. Kuo, and J. H. Liang, Chem. Mater. 28, 425 (2016).CrossRefGoogle Scholar
  24. 24.
    C. Wang, Q. Xia, Y. Nie, M. Rahman, and G. Guo, AIP Adv. 6, 035204 (2016).CrossRefGoogle Scholar
  25. 25.
    D. Kecik, E. Durgun, and S. Ciraci, Phys. Rev. B 94, 205409 (2016).CrossRefGoogle Scholar
  26. 26.
    Y. J. Wang, K. G. Zhou, G. Yu, X. Zhong, and H. L. Zhang, Sci. Rep. 6, 24981 (2016).CrossRefGoogle Scholar
  27. 27.
    Y. Wang, M. Ye, M. Wen, J. Li, X. Zhang, H. Zhang, Y. Guo, Y. Pan, L. Xiao, J. Liu, F. Pan, and J. Lu, ACS Appl. Mater. Interfaces 9, 29273 (2017).CrossRefGoogle Scholar
  28. 28.
    Z. Chen, P. Darancet, L. Wang, A. C. Crowther, Y. Gao, C. R. Dean, T. Taniguchi, K. Watanabe, J. Hone, C. A. Marianetti, and L. E. Brus, ACS Nano 8, 2943 (2014).CrossRefGoogle Scholar
  29. 29.
    J. Xiao, M. Long, X. Li, Q. Zhang, H. Xu, and K. S. Chan, J. Phys.: Condens. Matter 26, 405302 (2014).Google Scholar
  30. 30.
    P. Srivastava, K. P. S. S. Hembram, H. Mizuseki, K. R. Lee, S. S. Han, and S. Kim, J. Phys. Chem. C 119, 6530 (2015).CrossRefGoogle Scholar
  31. 31.
    O. Ü. Aktürk, E. Aktürk, and S. Ciraci, Phys. Rev. B 93, 035450 (2016).CrossRefGoogle Scholar
  32. 32.
    G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).CrossRefGoogle Scholar
  33. 33.
    A. D. Becke, Phys. Rev. A 38, 3098 (1988).CrossRefGoogle Scholar
  34. 34.
    J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).CrossRefGoogle Scholar
  35. 35.
    R. F. W. Bader, Atoms in Molecules–A Quantum Theory (Oxford Univ. Press, New York, 1990).Google Scholar
  36. 36.
    M. Y. Liu, Q. Y. Chen, Y. Huang, Z. Y. Li, C. Cao, and Y. He, Nanotechnology 29, 095203 (2018).CrossRefGoogle Scholar
  37. 37.
    M. Sun, S. Wang, Y. Du, J. Yu, and W. Tang, Appl. Surf. Sci. 389, 594 (2016).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • A. A. Kistanov
    • 1
    Email author
  • S. Kh. Khadiullin
    • 2
  • S. V. Dmitriev
    • 1
    • 3
  • E. A. Korznikova
    • 1
  1. 1.Institute for Metals Superplasticity Problems, Russian Academy of SciencesUfaRussia
  2. 2.Ufa State Aviation Technical UniversityUfaRussia
  3. 3.National Research Tomsk State UniversityTomskRussia

Personalised recommendations