Advertisement

Russian Journal of Physical Chemistry A

, Volume 93, Issue 6, pp 1111–1115 | Cite as

Theoretical Study of the Electrochemical Reduction of Sulfur in Lithium–Sulfur Cells: The Formation of Lithium Octasulfide

  • E. M. KhamitovEmail author
  • E. V. KuzminaEmail author
  • D. V. Kolosnitsyn
  • V. S. Kolosnitsyn
STRUCTURE OF MATTER AND QUANTUM CHEMISTRY
  • 16 Downloads

Abstract

Results are presented from quantum-chemical simulations of the first stage of the electrochemical reduction of sulfur S8 to Li2S8. The thermal effects of the formation of all possible intermediates of the electrochemical reduction of sulfur to lithium octasulfide are estimated. The sequence of these elementary reactions is established. The structure and properties of the resulting intermediates are characterized via AIM.

Keywords:

quantum-chemical study DFT CCSD QTAIM lithium polysulfide lithium–sulfur battery 

Notes

ACKNOWLEDGMENTS

This work was performed as part of State Task topic no. AAAA-A17-117011910031-7 and Russian Science Foundation project no. 17-73-20115. All calculations were carried out on a cluster at the regional shared computer equipment center of the Ufa Institute of Chemistry UFRС RAS. Our quantum-chemical calculations of the thermal effects of the elementary stages of the electrochemical reduction of sulfur to lithium octasulfide were supported by a grant from the Russian Science Foundation. The AIM analysis was performed as part of our State Task.

REFERENCES

  1. 1.
    A. Manthiram, Y. Fu, S. H. Chung, Ch. Zu, and Y. S. Su, Chem. Rev. 114, 11751 (2014).CrossRefGoogle Scholar
  2. 2.
    F. Schipper and D. Aurbach, Russ. J. Electrochem. 52, 1095 (2016).CrossRefGoogle Scholar
  3. 3.
    Z. Li, L. Yuan, Z. Yi, et al., Adv. Energy Mater. 4, 1301473 (2014).CrossRefGoogle Scholar
  4. 4.
    Y. Diao, K. Xie, S. Xiong, et al., J. Electrochem. Soc. 159, A421 (2012).CrossRefGoogle Scholar
  5. 5.
    M. Cuisinier, C. Hart, M. Balasubramanian, et al., Adv. Energy Mater. 5, 1401801 (2015).CrossRefGoogle Scholar
  6. 6.
    M. Hagena, P. Schiffelsb, M. Hammera, et al., J. Electrochem. Soc. 160, A1205 (2013).CrossRefGoogle Scholar
  7. 7.
    E. A. Bondarenko, A. V. Mazanik, E. A. Streltsov, et al., Mater. Sci.Eng. B 202, 61 (2015).CrossRefGoogle Scholar
  8. 8.
    W. Zhu, A. Paolella, C.-S. Kim, et al., Sustainable Energy Fuels 1, 737 (2017).Google Scholar
  9. 9.
    S. Waluś, C. Barchasz, R. Bouchet, et al., Adv. Energy Mater. 5, 1500165 (2015).CrossRefGoogle Scholar
  10. 10.
    R. S. Assary, L. A. Curtiss, and J. S. Moore, J. Phys. Chem. C 118, 11545 (2014).CrossRefGoogle Scholar
  11. 11.
    H. Park, N. Kumar, M. Melander, et al., Chem. Mater. 30, 915 (2018).CrossRefGoogle Scholar
  12. 12.
    L. Wang, T. Zhang, S. Yang, et al., J. Energy Chem. 22, 72 (2013).CrossRefGoogle Scholar
  13. 13.
    J.-J. Chen, R.-M. Yuan, J.-M. Feng, et al., Chem. Mater. 27, 2048 (2015).CrossRefGoogle Scholar
  14. 14.
    G. W. Frisch, H. B. Trucks, G. E. Schlegel, M. A. Scuseria, J. R. Robb, G. Cheeseman, V. Scalmani, G. A. Barone, H. Petersson, H. Nakatsuji, X. Li, A. Caricato, J. Marenich, B. G. Bloino, R. Janesko, et al., Gaussian 09, Rev. C (Gaussian, Inc., Wallingford CT, 2016).Google Scholar
  15. 15.
    W. Humphrey, A. Dalke, and K. Schulten, J. Mol. Graphics 14, 33 (1996).CrossRefGoogle Scholar
  16. 16.
    T. A. Todd, AIMAll, Vers. 17.11.14, TK Gristmill Software (Overland Park KS, 2017). http://www.aim.tkgristmill.com.Google Scholar
  17. 17.
    T. Lu and S. Manzetti, Struct. Chem. 25, 1521 (2014).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1. Ufa Institute of Chemistry UFRC RASUfaRussia

Personalised recommendations