Advertisement

Russian Journal of Physical Chemistry A

, Volume 93, Issue 6, pp 1182–1191 | Cite as

Solvent Effect on the Photocatalytic Activity of g-C3N4/BiOBr and its Effect on Degradation of Acetochlor

  • Huang Yingping
  • Yao Kun
  • Xiang Miaomiao
  • Jia MankeEmail author
  • Zhang Aiqing
COLLOID CHEMISTRY AND ELECTROCHEMISTRY

Abstract

g-C3N4/BiOBr composites were obtained via solvothermal method. XRD, SEM, FTIR, UV–Vis DRS, BET, and BJH methods were used to characterize the as-prepared catalysts. The results indicate that the nature of the solvent used has a great effect on the crystallinity, morphology, specific surface area and photocatalytic activity of the prepared materials. Photodegradation of Acetochlor as a model toxicant was studied using the prepared catalysts under visible light irradiation. g-C3N4/BiOBr-GL fabricated in the presence of glycerol has greater adsorption capacity and specific surface area. It has shown better photocatalytic degradation efficiency than other samples. ESR and scavenger experiments performed to reveal the photodegradation mechanism show that OH and \({\text{O}}_{2}^{ - }\) species were generated. Photogenerated holes and \({\text{O}}_{2}^{ - }\) play the important role in the photocatalytic degradation of acetochlor.

Keyword:

g-C3N4/BiOBr photocatalysis solvothremal synthesis photooxidation mechanism acetochlor 

Notes

ACKNOWLEDGMENTS

This work was supported by the National Natural Science Foundation of China (21677086, 21407092, 21377067, 21577077, and 21577078) and the Natural Science Foundation for Innovation Group of Hubei Province, China (2015CFA021).

REFERENCES

  1. 1.
    L. Shi, L. Liang, F. Wang, M. Liu, K. Chen, K. Sun, N. Zhang, and J. Sun, ACS Sustainable Chem. Eng. 3, 3412 (2015).CrossRefGoogle Scholar
  2. 2.
    X. Li, G. Hartley, A. Ward, P. Young, A. Masters, and T. Maschmeyer, J. Phys. Chem. C 119, 14938 (2015).CrossRefGoogle Scholar
  3. 3.
    J. Zhang, Y. Chen, and X. Wang, Energy Environ. Sci. 8, 3092 (2015).CrossRefGoogle Scholar
  4. 4.
    Y. Wang, X. Wang, and M. Antonietti, Angew. Chem. Int. Ed. 51, 68 (2012).CrossRefGoogle Scholar
  5. 5.
    L. Shi, T. Wang, H. Zhang, K. Chang, and J. Ye, Adv. Funct. Mater. 25, 2360 (2015).Google Scholar
  6. 6.
    X. She, H. Xu, Y. Xu, J. Yan, J. Xia, L. Xu, Y. Song, Y. Jiang, Q. Zhang, and H. Li, J. Mater. Chem. A 2, 2563 (2014).CrossRefGoogle Scholar
  7. 7.
    S. Yan, S. Lv, Z. Li, and Z. Zou, Dalton Trans. 39, 1488 (2010).CrossRefGoogle Scholar
  8. 8.
    H. Yan and H. Yang, J. Alloys Compd. 509, L26 (2011).CrossRefGoogle Scholar
  9. 9.
    J. Sun, Y. Yuan, L. Qiu, X. Jiang, A. Xie, Y. Shen, and J. Zhu, Dalton Trans. 41, 6756 (2012).CrossRefGoogle Scholar
  10. 10.
    Y. Wang, X. Bai, C. Pan, J. He, and Y. Zhu, J. Mater. Chem. 22, 11568 (2012).CrossRefGoogle Scholar
  11. 11.
    L. Shi, L. Liang, F. Wang, M. Liu, and J. Sun, Dalton Trans. 45, 5815 (2016).CrossRefGoogle Scholar
  12. 12.
    H. Li, J. Shang, Z. Ai, and L. Zhang, J. Am. Chem. Soc. 137, 6393 (2015).CrossRefGoogle Scholar
  13. 13.
    F. Duan, X. Wang, T. Tan, and M. Chen, Physi. Chem. Chem. Phys. 18, 6113 (2016).CrossRefGoogle Scholar
  14. 14.
    P. Reiss, M. Protière, and L. Li, Small 5, 154 (2009).CrossRefGoogle Scholar
  15. 15.
    K. Dai, L. Lu, C. Liang, G. Zhu, Q. Liu, L. Geng, and J. He, Dalton Trans. 44, 7903 (2015).CrossRefGoogle Scholar
  16. 16.
    L. Kong, Z. Jiang, H. Lai, R. Nicholls, T. Xiao, M. Jones, and P. Edwards, J. Catal. 293, 116 (2012).CrossRefGoogle Scholar
  17. 17.
    L. Ye, J. Liu, Z. Jiang, T. Peng, and L. Zan, Appl. Catal., B 142–143, 1 (2013).Google Scholar
  18. 18.
    Y. Sun, W. Zhang, T. Xiong, Z. Zhao, F. Dong, R. Wang, and W. Ho, J. Colloid Interface Sci. 418, 317 (2014).CrossRefGoogle Scholar
  19. 19.
    J. Sun, J. Song, M. Gondal, S. Shi, Z. Lu, Q. Xu, X. Chang, D. Xiang, and K. Shen, Res. Chem. Intermed. 41, 6941 (2015).CrossRefGoogle Scholar
  20. 20.
    J. Xia, J. Di, S. Yin, H. Li, H. Xu, L. Xu, H. Shu, and M. He, Mater. Sci. Semicond. Process. 24, 96 (2014).CrossRefGoogle Scholar
  21. 21.
    Z. Yang, J. Li, F. Cheng, Z. Chen, and X. Dong, J. Alloys Compd. 634, 215 (2015).CrossRefGoogle Scholar
  22. 22.
    F. Cheng, H. Wang, and X. Dong, Chem. Commun. 51, 7176 (2015).CrossRefGoogle Scholar
  23. 23.
    Z. Liu, B. Wu, D. Xiang, and Y. Zhu, Mater. Res. Bull. 47, 3753 (2012).CrossRefGoogle Scholar
  24. 24.
    Z. Liu, B. Wu, J. Niu, X. Huang, and Y. Zhu, Appl. Surf. Sci. 288, 369 (2014).CrossRefGoogle Scholar
  25. 25.
    H. Xing, H. Ma, Y. Fu, X. Zhang, X. Dong, and X. Zhang, J. Renewable Sustainable Energy 7, 6675 (2015).CrossRefGoogle Scholar
  26. 26.
    L. Guzzella, F. Pozzoni, and G. Giuliano, Environ. Pollut. 142, 344 (2006).CrossRefGoogle Scholar
  27. 27.
    C. Ye, Bull. Environ. Contam. Toxicol. 71, 919 (2003).CrossRefGoogle Scholar
  28. 28.
    C. Lerro, S. Koutros, G. Andreotti, C. Hines, A. Blair, J. Lubin, X. Ma, Y. Zhang, and L. Beane Freeman, Int. J. Cancer 137, 1167 (2014).CrossRefGoogle Scholar
  29. 29.
    S. Qiu, S. Xu, G. Li, and J. Yang, Materials 9, 1 (2016).Google Scholar
  30. 30.
    Y. Peng, W. Ma, M. Jia, X. Zhao, D. Johnson, and Y. Huang, Appl. Catal., B 181, 517 (2016).CrossRefGoogle Scholar
  31. 31.
    H. Wang, Z. Chen, J. Shen, F. Xiang, Y. Liu, Y. Liu, and X. Di, China Water Wastewater 27, 90 (2011).Google Scholar
  32. 32.
    X. Doorslaer, P. Heynderickx, K. Demeestere, K. Debevere, H. Langenhove, and J. Dewulf, Appl. Catal., B 111–112, 150 (2012).CrossRefGoogle Scholar
  33. 33.
    X. Chen, Y. Dai, X. Wang, J. Guo, T. Liu, and F. Li, J. Hazard. Mater. 292, 9 (2015).CrossRefGoogle Scholar
  34. 34.
    X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J. Carlsson, K. Domen, and M. Antonietti, Nat. Mater. 8, 76 (2009).CrossRefGoogle Scholar
  35. 35.
    L. Xu, H. Li, J. Xia, L. Wang, H. Xu, H. Ji, H. Li, and K. Sun, Mater. Lett. 128, 349 (2014).CrossRefGoogle Scholar
  36. 36.
    S. Yin, M. Shinozaki, and T. Sato, J. Lumin. 126, 427 (2007).CrossRefGoogle Scholar
  37. 37.
    Y. Zhang, A. Thomas, M. Antonietti, and X. Wang, J. Am. Chem. Soc. 131, 50 (2009).CrossRefGoogle Scholar
  38. 38.
    X. Li, J. Zhang, L. Shen, Y. Ma, W. Lei, Q. Cui, and G. Zou, Appl. Phys. A 94, 387 (2009).CrossRefGoogle Scholar
  39. 39.
    S. Yan, Z. Li, and Z. Zou, Langmuir 25, 10397 (2009).CrossRefGoogle Scholar
  40. 40.
    Q. Xiang, J. Yu, and M. Jaroniec, J. Phys. Chem. C 115, 7355 (2011).CrossRefGoogle Scholar
  41. 41.
    J. Song, C. Mao, H. Niu, Y. Shen, and S. Zhang, CrystEngComm. 12, 3875 (2010).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • Huang Yingping
    • 1
  • Yao Kun
    • 1
    • 2
  • Xiang Miaomiao
    • 1
    • 2
  • Jia Manke
    • 1
    • 2
    Email author
  • Zhang Aiqing
    • 3
  1. 1.Engineering Research Center of Eco-environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges UniversityYichangChina
  2. 2.College of Biological and Pharmaceutical Sciences, China Three Gorges UniversityYichangChina
  3. 3.Key Laboratory of Catalysis and Materials Science of the State Ethnic Affairs Commission and Ministry of Education, South-Central University for NationalitiesWuhanChina

Personalised recommendations