Russian Journal of Physical Chemistry A

, Volume 93, Issue 6, pp 1165–1170 | Cite as

Separating Enantiomers of Haloalkanes and Alcohols on a Stationary Phase Based on the Supramolecular Structure of Melamine with Induced Chirality

  • Yu. Yu. GainullinaEmail author
  • D. V. Timofeeva
  • S. P. Ivanov
  • V. Yu. Gus’kov


A new chiral stationary phase is proposed that is based on the supramolecular structure of melamine self-assembled in the mode of the induction of chirality. Induction is achieved via mechanical stirring in accordance with the Kondepudi effect in order to form a layer of a supramolecular structure with predominantly one type of chiral supramolecular domains on the surface of the sorbent. The resulting inert support with 1% melamine is used for the gas chromatographic separation of enantiomers of 2-butanol, 1‑methoxy-2-propanol, 2-bromobutane, 2-chlorobutane, and 2-bromopentane. The coefficients of selectivity and the separation of enantiomers are calculated. No separation of enantiomers is observed on a column conditioned at 100°C. After conditioning the column at 200°C, a series of successful separations of racemates is obtained in the 60–110°C range of temperatures. The highest coefficient of selectivity for haloalkanes is obtained at 70–75°C, so 2-bromobutane has α = 1.62 at 70°C, 2-chlorobutane has α = 1.23 at 75°C, and 2‑bromopentane has α = 1.68 at 70°C. The coefficients of selectivity for 2-butanol and 1-methoxy-2-propanol are highest at 80 and 100°C (α = 1.45 and 2.24), respectively. It is assumed that the ability of the suprastructure of melamine to exhibit enantioselectivity is associated with the formation of cavities capable of chiral recognition.


enantiomers melamine inert support 2-halosubstituted alkanes gas chromatography supramolecular structure induction of chirality Kondepudi effect coefficient of selectivity 



This work was supported by a grant from the Russian Science Foundation, project no. 17-73-10181.


  1. 1.
    S.-M. Xie and L.-M. Yuan, J. Separ. Sci. 40, 124 (2017).CrossRefGoogle Scholar
  2. 2.
    V. Yu. Gus’kov and V. N. Maistrenko, J. Anal. Chem. 73, 937 (2018).CrossRefGoogle Scholar
  3. 3.
    P. Peluso, V. Mamane, and S. Cossu, J. Chromatogr., A 1363, 11 (2014).Google Scholar
  4. 4.
    C. Chang, X. Wang, Y. Bai, and H. Liu, Trends Anal. Chem. 39, 195 (2012).CrossRefGoogle Scholar
  5. 5.
    F. G. Adly, N. Y. Antwi, and A. Ghanem, Chirality 28, 97 (2016).CrossRefGoogle Scholar
  6. 6.
    Y. Xiao, S.-C. Ng, T. T. Y. Tan, and Y. Wang, J. Chromatogr. A 1269, 52 (2012).CrossRefGoogle Scholar
  7. 7.
    M. Cavallini, G. Aloisi, M. Bracali, and R. Guidelli, J. Electroanal. Chem. 444, 75 (1998).CrossRefGoogle Scholar
  8. 8.
    T. Dretschkow, A. S. Dakkouri, and T. Wandlowski, Langmuir 13, 2843 (1997).CrossRefGoogle Scholar
  9. 9.
    J. A. Gardener, O. Y. Shvarova, G. A. D. Briggs, and M. R. Castell, J. Phys. Chem. C 114, 5859 (2010).CrossRefGoogle Scholar
  10. 10.
    K. Venkatasubramanian, R. J. Mojeste, and Z. M. Trefonas, J. Heterocycl. Chem. 12, 699 (1975).CrossRefGoogle Scholar
  11. 11.
    C. P. Ivanov, K. A. Lysenko, O. A. Kolyadina, Z. A. Starikova, and Yu. I. Murinov, Russ. J. Phys. Chem. A 79, 215 (2005).Google Scholar
  12. 12.
    R. Feher, K. Wurst, D. B. Amabilino, and J. Veciana, Inorg. Chim. Acta 361, 4094 (2008).CrossRefGoogle Scholar
  13. 13.
    F. Guo, E. Y. Cheung, K. D. M. Harris, and V. R. Pedireddi, Cryst. Growth Des. 6, 846 (2006).CrossRefGoogle Scholar
  14. 14.
    K. Kannappan, T. L. Werblowsky, K. T. Rim, et al., J. Phys. Chem. B 111, 6634 (2007).CrossRefGoogle Scholar
  15. 15.
    H.-M. Zhang, Z.-X. Xie, L.-S. Long, et al., J. Phys. Chem. C 112, 4209 (2008).CrossRefGoogle Scholar
  16. 16.
    Y.-P. Lin, O. Ourdjini, L. Giovanelli, et al., J. Phys. Chem. C 117, 9895 (2013).CrossRefGoogle Scholar
  17. 17.
    B. Roy, P. Bairia, and A. K. Nandi, RSC Adv. 4, 1708 (2014).Google Scholar
  18. 18.
    S. Godlewski, A. Tekiel, W. Piskorz, et al., ACS Nano 6, 8536 (2012).CrossRefGoogle Scholar
  19. 19.
    V. Y. Gus’kov, Y. Y. Gainullina, S. P. Ivanov, and F. K. Kudasheva, J. Chromatogr., A 1356, 230 (2014).Google Scholar
  20. 20.
    V. Yu. Gus’kov, Yu. Yu. Gainullina, S. P. Ivanov, and F. Kh. Kudasheva, Prot. Met. Phys. Chem. Surf. 50, 55 (2014).CrossRefGoogle Scholar
  21. 21.
    V. Yu. Gus’kov, S. P. Ivanov, R. A. Khabibullina, R. R. Garafutdinov, and F. Kh. Kudasheva, Russ. J. Phys. Chem. A 86, 475 (2012).CrossRefGoogle Scholar
  22. 22.
    V. Yu. Gus’kov, Yu. Yu. Gainullina, S. P. Ivanov, and F. Kh. Kudasheva, Russ. J. Phys. Chem. A 88, 1042 (2014).CrossRefGoogle Scholar
  23. 23.
    Yu. Yu. Gainullina and V. Yu. Gus’kov, Vestn. Bashkir. Univ. 22, 707 (2017).Google Scholar
  24. 24.
    V. Yu. Gus’kov, D. A. Sukhareva, I. V. Arslanova, and D. E. Musabirov, J. Anal. Chem. 72, 1089 (2017).CrossRefGoogle Scholar
  25. 25.
    A. R. Nafikova, D. A. Allayarova, and V. Yu. Gus’kov, J. Anal. Chem. 74 (2) (2019, in press).Google Scholar
  26. 26.
    V. Y. Gus’kov, D. A. Sukhareva, Y. Y. Gainullina, et al., Supramol. Chem. 30, 940 (2018).CrossRefGoogle Scholar
  27. 27.
    A. I. Pravdin, Usp. Khim. Khim. Tekhnol. 22 (2), 28 (2008).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • Yu. Yu. Gainullina
    • 1
    Email author
  • D. V. Timofeeva
    • 1
  • S. P. Ivanov
    • 2
  • V. Yu. Gus’kov
    • 1
  1. 1.Bashkir State UniversityUfaRussia
  2. 2.Ufa Institute of Chemistry, Ufa Federal Research Center, Russian Academy of SciencesUfaRussia

Personalised recommendations