Russian Journal of Physical Chemistry A

, Volume 93, Issue 6, pp 1073–1081 | Cite as

Quantum-Chemical Modeling of the Effect of Stretching Mechanical Activation of the Central С–С Bonds in Linear Polymers

  • I. S. Flyagina
  • S. P. Dolin
  • A. I. Malkin
  • V. I. SavenkoEmail author


The effect of mechanical activation by preliminarily stretching linear polymeric hydrocarbon molecules (e.g., polyethylene and polypropylene) on the energy force characteristics of the cleavage of central С‒С bonds in these molecules is studied via quantum-chemical modeling. It is found that during the deformation of С–С bonds, the molecular electronic subsystem is rearranged stepwise. It is shown that preliminary mechanical activation of polymeric molecules through their uniform stretching lowers the energy of dissociation of central С–С bonds in a polymeric material. This agrees qualitatively with experimental observations of the behavior of such polymeric macrosystems.


quantum chemical analysis mechanical activation polymers residual deformations destruction interatomic bonds 



  1. 1.
    E. G. Avvakumov, Fundamental Principles of Mechanical Activation, Mechanosynthesis and Mechanochemical Technologies (Nauka, Novosibirsk, 2009) [in Russian].Google Scholar
  2. 2.
    V. E. Panin, V. A. Likhachev, and Yu. V. Grinyaev, Structural Levels of Deformation of Solids (Nauka, Novosibirsk, 1985) [in Russian].Google Scholar
  3. 3.
    A. A. Askadskii, Polymer Deformation (Khimiya, Moscow, 1973) [in Russian].Google Scholar
  4. 4.
    V. E. Gul’, Structure and Strength of Polymers (Khimiya, Moscow, 1978) [in Russian].Google Scholar
  5. 5.
    G. M. Bartenev, Strength and Failure Mechanisms in Polymers (Khimiya, Moscow, 1984) [in Russian].Google Scholar
  6. 6.
    I. Narisava, Strength of Polymer Materials (Khimiya, Moscow, 1987) [in Russian].Google Scholar
  7. 7.
    A. M. Dubinskaya, Russ. Chem. Rev. 68, 637 (1999).CrossRefGoogle Scholar
  8. 8.
    M. J. Frisch, G. W. Trucks, H. B. Schlegel, et al., Gaussian 09, Rev. D.01 (Gaussian Inc., Wallingford, CT, 2009).Google Scholar
  9. 9.
    R. Dennington and K. T. Millam, GaussView, Version 5 (J. Semichem Inc., Shawnee Mission KS, 2009).Google Scholar
  10. 10.
    G. A. Zhurko and D. A. Zhurko, Chemcraft. Accessed 2015.Google Scholar
  11. 11.
    E. D. Glendening, A. E. Reed, J. E. Carpenter, and F. Weinhold, NBO 6.0 Program Manual. NBO6 Website. Accessed 2013.Google Scholar
  12. 12.
    R. F. W. Bader, Atoms in Molecules: A Quantum Theory, International Series of Monographs on Chemistry (Clarendon, Oxford, 1990).Google Scholar
  13. 13.
    T. A. Keith, AIMALL. Accessed 2015.Google Scholar
  14. 14.
    I. Alkorta and J. Elguero, Chem. Phys. Lett. 425, 221 (2006).CrossRefGoogle Scholar
  15. 15.
    V. S. Yushchenko, T. P. Ponomareva, and E. D. Shchukin, J. Mater. Sci. 27, 1659 (1992).CrossRefGoogle Scholar
  16. 16.
    S. S. Batsanov, Inorg. Mater. 37, 871 (2001).CrossRefGoogle Scholar
  17. 17.
    A. A. Levin and S. P. Dolin, Koord. Khim. 5, 320 (1979).Google Scholar
  18. 18.
    A. A. Levin and P. N. D’yachkov, Electronic and Geometric Structure and Transformations of Heteroligand Molecules (Nauka, Moscow, 1990) [in Russian].Google Scholar
  19. 19.
    Encyclopedia of Spectroscopy and Spectrometry, Ed. by J. Lindon, 2nd ed. (Academic, New York, 2010.Google Scholar
  20. 20.
    L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 5: Statistical Physics (Fizmatlit, Moscow, 2005; Pergamon, Oxford, 1980).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • I. S. Flyagina
    • 1
  • S. P. Dolin
    • 1
    • 2
  • A. I. Malkin
    • 1
  • V. I. Savenko
    • 1
    Email author
  1. 1.Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, MoscowRussia
  2. 2.Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of SciencesMoscowRussia

Personalised recommendations